

Company:	Outer Dowsing Offshore Wind	Asset:	Whole Asset
Project:	Whole Wind Farm	Sub Project/Package:	Whole Asset
Document Title or Description:	Report to Inform Appropriate Assessment Appendix 1: Screening Matrices		
Internal Document Number:	PP1-ODOW-DEV-CS-MAT-0001	3 rd Party Doc No (If applicable):	N/A

Outer Dowsing Offshore Wind accepts no liability for the accuracy or completeness of the information in this document nor for any loss or damage arising from the use of such information.

Rev No.	Date	Status / Reason for Issue	Author	Checked by	Reviewed by	Approved by
1.0	March 2024	DCO Application	GoBe	Outer Dowsing	Shepherd and Wedderburn	Outer Dowsing

Table of Contents

A	Acronyms & Definitions	5
	Abbreviations / Acronyms	5
R	Reference Documentation	6
1	Matrix Key	7
2	Index to Matrices	8
	Table 2.1 Details on all matrices included in this appendix	8
3	Effects Considered	10
	Table 3.1: Designated sites and impacts considered for assessment within the RIAA	10
	3.1 Sites designated with subtidal and intertidal benthic ecology features	22
	Matrix 1: North Norfolk Sandbanks and Saturn Reef SAC	22
	Matrix 2: Inner Dowsing, Race Bank, and North Ridge SAC	23
	Matrix 3: The Wash and North Norfolk Coast SAC	24
	Matrix 4: Humber Estuary Ramsar	25
	Matrix 5: Humber Estuary SAC	26
	Matrix 6: Gibraltar Point Ramsar	27
	Matrix 7: The Wash Ramsar	28
	3.2 Sites designated with marine mammal features	29
	Matrix 8: Southern North Sea SAC	29
	Matrix 9: Humber Estuary SAC	30
	Matrix 10: Humber Estuary Ramsar	31
	Matrix 11: The Wash and North Norfolk Coast SAC	32
	Matrix 12: Berwickshire and North Northumberland Coast SAC	33
	Matrix 13: Moray Firth SAC	34
	Matrix 14: Transboundary sites for Harbour porpoise (12 sites)	35
	Matrix 15: Transboundary sites for Harbour seals (12 sites)	36
	Matrix 16: Transboundary sites for Grey seals (12 sites)	37
	3.3 Sites designated with offshore and intertidal ornithology features	38
	Matrix 17: Greater Wash SPA	38
	Matrix 18: Humber Estuary Ramsar	39
	Matrix 19: Humber Estuary SPA	40

Matrix 20: North Norfolk Coast SPA	42
Matrix 21: Gibraltar Point Ramsar	43
Matrix 22: Gibraltar Point SPA	44
Matrix 23: The Wash Ramsar	45
Matrix 24: The Wash SPA	46
Matrix 25: Great Yarmouth North Denes SPA	48
Matrix 26: Flamborough and Filey Coast SPA	49
Matrix 27: Outer Thames Estuary SPA	50
Matrix 28: Alde-Ore Estuary Ramsar	51
Matrix 29: Alde-Ore Estuary SPA	52
Matrix 30: Northumbria Coast SPA	53
Matrix 31: Foulness (Mid-Essex Coast Phase 5) SPA	54
Matrix 32: Thanet Coast and Sandwich Bay SPA	55
Matrix 33: Northumberland Marine SPA	56
Matrix 34: Coquet Island SPA	57
Matrix 35: Dungeness, Romney Marsh and Rye Bay SPA	58
Matrix 36: Farne Islands SPA	59
Matrix 37: Solent and Southampton Water SPA	60
Matrix 38: St Abb's Head to Fast Castle SPA	61
Matrix 39: Firth of Forth SPA	62
Matrix 40: Forth Islands SPA	63
Matrix 41: Poole Harbour Ramsar	64
Matrix 42: Poole Harbour SPA	65
Matrix 43: Imperial Dock Lock, Leith SPA	66
Matrix 44: Firth of Tay and Eden Estuary SPA	67
Matrix 45: Chesil Beach and The Fleet SPA	68
Matrix 46: Fowlsheugh SPA	69
Matrix 47: Ythan Estuary, Sands of Forvie and Meikle Loch SPA	70
Matrix 48: Ythan Estuary and Meikle Loch Ramsar	71
Matrix 49: Buchan Ness to Collieston Coast SPA	72
Matrix 50: Troup, Pennan and Lion's Heads SPA	73
Matrix 51: East Caithness Cliffs SPA	74
Matrix 52: North Caithness Cliffs SPA	75

Matrix 53: Pentland Firth Islands SPA	76
Matrix 54: Copinsay SPA	77
Matrix 55: Hoy SPA	78
Matrix 56: Calf of Eday SPA	79
Matrix 58: Rousay SPA	80
Matrix 59: Marwick Head SPA	81
Matrix 60: Fair Isle SPA	82
Matrix 61: West Westray SPA	83
Matrix 62: Papa Westray (North Hill and Holm) SPA	84
Matrix 63: Sumburgh Head SPA	85
Matrix 64: Noss SPA	86
Matrix 65: Foula SPA	87
Matrix 66: Fetlar SPA	88
Matrix 67: Hermaness, Saxa Vord and Valla Field SPA	89
Matrix 68: Transboundary sites for Lesser black-backed gull (3 sites)	90
Matrix 69: Transboundary sites for Northern fulmar (9 sites)	91
Matrix 70: Transboundary sites for Manx shearwater (4 sites)	92
3.4 Sites designated with Migratory Fish Features	93
Matrix 71: Humber Estuary SAC	93
3.5 Sites Designated with Onshore Ecology Features	94
Matrix 72: Humber Estuary SPA	94
Matrix 73: Humber Estuary Ramsar Site	95
Matrix 74: Humber Estuary SAC	97
Matrix 75: Saltfleetby-Theddlethorpe Dunes & Gibraltar Point SAC	98
Matrix 76: The Wash SPA	99
Matrix 77: The Wash RAMSAR site	101
Matrix 78: The Wash & North Norfolk Coast SAC	102
Matrix 79: Greater Wash SPA	103
Matrix 80: Gibraltar Point SPA	104
Matrix 81: Gibraltar Point RAMSAR	105
Matrix 82: North Norfolk SPA	106
Matrix 83: North Norfolk RAMSAR	107

Acronyms & Definitions

Abbreviations / Acronyms

Abbreviation / Acronym	Description
EMF	Electromagnetic fields
HEA	Habitat Regulations Assessment
INNS	Invasive Non-Native Species
LSE	Likely Significant Effect
RIAA	Report to Inform Appropriate Assessment
SAC	Special Area of Conservation
SPA	Special Protection Area

Reference Documentation

Document Number	Title
N/A	No other documents are referenced within this appendix

1 Matrix Key

- 1. Evidence for, or against, adverse effects on designated site qualifying features and Likely Significant Effect is detailed within the footnotes to the integrity matrices.
- √ = Likely Significant Effect cannot be excluded
- X = Likely Significant Effect can be excluded
- C = Construction
- O = Operation and Maintenance
- D = Decommissioning
- Effect not relevant to feature (no potential for pathway)

2 Index to Matrices

2. This appendix presents the screening matrices for Outer Dowsing Offshore Wind Farm (ODOW, hereafter 'The Project') promoted by Outer Dowsing Offshore Wind (hereafter 'the Applicant') in accordance with the structure and format specific in PINS Advice Note 10 (August 2022, version 9).

Table 2.1 Details on all matrices included in this appendix

Matrix	Site included in the assessment
Matrix 1	North Norfolk Sandbanks and Saturn Reef SAC
Matrix 2	Inner Dowsing Sandbanks and Saturn Reef SAC
Matrix 3	The Wash and North Norfolk Coast SAC
Matrix 4	Humber Estuary Ramsar
Matrix 5	Humber Estuary SAC
Matrix 6	Gibraltar Point RAMSAR
Matrix 7	The Wash RAMSAR
Matrix 8	Berwickshire and North Northumberland SAC
Matrix 9	Moray Firth SAC
Matrix 10	Southern North Sea SAC
Matrix 11	Humber Estuary SAC
Matrix 12	The Wash and North Norfolk Coast SAC
Matrix 13	Transboundary sites for Harbour porpoise (12 sites)
Matrix 14	Transboundary sites for seals (12 sites)
Matrix 15	Greater Wash SPA
Matrix 16	Humber Estuary Ramsar
Matrix 17	Humber Estuary SPA
Matrix 18	North Norfolk Coast SPA
Matrix 19	Gibraltar Point Ramsar
Matrix 20	Gibraltar Point SPA
Matrix 21	The Wash Ramsar
Matrix 22	The Wash SPA
Matrix 23	Great Yarmouth North Denes SPA
Matrix 24	Flamborough and Filey Coast SPA
Matrix 25	Outer Thames Estuary SPA
Matrix 26	Alde-Ore Estuary Ramsar
Matrix 27	Alde-Ore Estuary SPA
Matrix 28	Northumbria Coast SPA
Matrix 29	Foulness (Mid-Essex Coast Phase 5) SPA
Matrix 30	Thanet Coast and Sandwich Bay SPA
Matrix 31	Northumberland Marine SPA
Matrix 32	Coquet Island SPA
Matrix 33	Dungeness, Romney Marsh and Rye Bay SPA
Matrix 34	Farne Islands SPA
Matrix 35	Solent and Southampton Water SPA
Matrix 36	Firth of Forth SPA

Matrix	Cita included in the accomment	
Matrix 27	Site included in the assessment	
Matrix 37	Forth Islands SPA	
Matrix 38	Poole Harbour Ramsar	
Matrix 39	Poole Harbour SPA	
Matrix 40	Imperial Dock Lock, Leith SPA	
Matrix 41	Firth of Tay and Eden Estuary SPA	
Matrix 42	Chesil Beach and The Fleet SPA	
Matrix 43	Fowlsheugh SPA	
Matrix 44	Ythan Estuary, Sands of Forvie and Meikle Loch SPA	
Matrix 45	Ythan Estuary and Meikle Loch Ramsar	
Matrix 46	Troup, Pennan and Lion's Heads SPA	
Matrix 47	East Caithness Cliffs SPA	
Matrix 48	North Caithness Cliffs SPA	
Matrix 49	Pentland Firth Islands SPA	
Matrix 50	Hoy SPA	
Matrix 51	Marwick Head SPA	
Matrix 52	Fair Isle SPA	
Matrix 53	West Westray SPA	
Matrix 54	Papa Westray (North Hill and Holm) SPA	
Matrix 55	Sumburgh Head SPA	
Matrix 56	Noss SPA	
Matrix 57	Fetlar SPA	
Matrix 58	Hermaness, Saxa Vord and Valla Field SPA	
Matrix 59	Transboundary sites for Lesser black-backed gull (3 sites)	
Matrix 60	Transboundary sites for Northern fulmar (9 sites)	
Matrix 61	Transboundary sites for Manx shearwater (4 sites)	
Matrix 62	Humber Estuary SAC	
Matrix 63	River Derwent SAC	
Matrix 64	Humber Estuary SPA	
Matrix 65	Humber Estuary Ramsar Site	
Matrix 66	Humber Estuary SAC	
Matrix 67	Saltfleetby-Theddlethorpe Dunes & Gibraltar Point SAC	
Matrix 68	The Wash SPA	
Matrix 69	The Wash Ramsar Site	
Matrix 70	The Wash & North Norfolk Coast SAC	
Matrix 71	Greater Wash SPA	
Matrix 72	Gibraltar Point SPA	
Matrix 73	Gibraltar Point Ramsar Site	
Matrix 74	North Norfolk SPA	
Matrix 75	North Norfolk RAMSAR	

3 Effects Considered

3. Potential effects on designated sites which are considered within the submitted information to support the Report to Inform Appropriate Assessment (RIAA) for the Habitats Regulation Assessment (HRA) of Outer Dowsing Offshore Wind are provided in Table 3.1 below.

Table 3.1: Designated sites and impacts considered for assessment within the RIAA

Designations	Impacts Considered in Matrices
Subtidal and intertidal benthic ecol	
North Norfolk Sandbanks and	Suspended sediment / deposition
Saturn Reef SAC	Indirect pollution
	Accidental pollution
	Invasive Non-Native Species (INNS)
	Changes to physical processes
	Physical habitat loss / disturbance
	Electromagnetic fields (EMF)
	In-combination
Inner Dowsing Sandbanks and	Physical habitat loss / disturbance
Saturn Reef SAC	Suspended sediment / deposition
	Indirect pollution
	Accidental pollution
	Invasive Non-Native Species (INNS)
	Changes to physical processes
	Electromagnetic fields (EMF)
	In-combination
The Wash and North Norfolk Coast	Physical habitat loss / disturbance
SAC	Suspended sediment / deposition
	Indirect pollution
	Accidental pollution
	Invasive Non-Native Species (INNS)
	Changes to physical processes
	Electromagnetic fields (EMF)
	In-combination
Humber Estuary Ramsar	Physical habitat loss / disturbance
	Suspended sediment / deposition
	Indirect pollution
	Accidental pollution
	Invasive Non-Native Species (INNS)
	Changes to physical processes
	Electromagnetic fields (EMF)
	In-combination
Humber Estuary SAC	Physical habitat loss / disturbance
	Suspended sediment / deposition
	Indirect pollution
	Accidental pollution
	Invasive Non-Native Species (INNS)

		 OFFSHORE WIND
Designations	Impacts Considered in Matrices	
	Changes to physical processes	
	Electromagnetic fields (EMF)	
	In-combination	
Gibraltar Point Ramsar	Physical habitat loss / disturbance	
	Suspended sediment / deposition	
	Indirect pollution	
	Accidental pollution	
	Invasive Non-Native Species (INNS)	
	Changes to physical processes	
	Electromagnetic fields (EMF)	
	In-combination	
The Wash Ramsar	Physical habitat loss/ disturbance	
	Suspended sediment / deposition	
	Indirect pollution	
	Accidental pollution	
	Invasive Non-Native Species (INNS)	
	Changes to physical processes	
	Electromagnetic fields (EMF)	
	In-combination	
Marine Mammals		
Southern North Sea SAC	Underwater noise	
	Vessel disturbance	
	Collision risk	
	Indirect pollution	
	Accidental pollution	
	Changes to prey	
	In-combination effects	
Humber Estuary SAC and RAMSAR	Underwater noise	
	Vessel disturbance	
	Collision risk	
	Indirect pollution	
	Accidental pollution	
	Changes to prey	
	Habitat loss	
	Disturbance at haul out	
	In-combination effects	
Berwickshire and North	Underwater noise	
Northumberland Coast SAC	Vessel disturbance	
The state of the s	Collision Risk	
	Indirect pollution	
	Accidental pollution	
	Changes to prey	
	Habitat loss	
	In-combination effects	
	ווו כטוווטווומנוטוו בוובננג	

Designations	Impacts Considered in Matrices
The Wash and North Norfolk Coast	Underwater noise
SAC	Vessel disturbance
57.10	Collision Risk
	Indirect pollution
	Accidental pollution
	Changes to prey
	Habitat loss
	Disturbance at haul out
	In-combination effects
Transboundary sites for Harbour	Underwater noise
•	Vessel disturbance
porpoise (12 sites)	Collision Risk
	Indirect pollution
	Accidental pollution
	Changes to prey
	In-combination effects
Moray Firth SAC	Underwater noise
	Vessel disturbance
	Collision Risk
	Indirect pollution
	Accidental pollution
	Changes to prey
	Habitat loss
	In-combination effects
Transboundary sites for seals (12	Underwater noise
sites)	Vessel disturbance
	Collision Risk
	Indirect pollution
	Accidental pollution
	Changes to prey
	Habitat loss
	Disturbance at haul out
	In-combination effects
Offshore and intertidal ornithology	
Greater Wash SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Humber Estuary Ramsar	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure

	OFFSHORE WIND
Designations	Impacts Considered in Matrices
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Humber Estuary SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
North Norfolk Coast SPA	Direct disturbance and displacement due to work activity and
North Nortolk Coast 31 A	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Gibraltar Point Ramsar	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Gibraltar Point SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
The Wash Ramsar	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertigal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
The Mesh CDA	Indirect impacts through effects on habitats and prey species
The Wash SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species

Designations	Impacts Considered in Matrices
Great Yarmouth North Denes SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Flamborough and Filey Coast SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds
Outer Thames Estuary SPA	Indirect impacts through effects on habitats and prey species Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Alde-Ore Estuary Ramsar	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Alde-Ore Estuary SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Coquet Island SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Northumbria Coast SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones

	OFFSHORE WIND
Designations	Impacts Considered in Matrices
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Foulness (Mid-Essex Coast Phase	Direct disturbance and displacement due to work activity and
5) SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Thanet Coast and Sandwich Bay	Direct disturbance and displacement due to work activity and
SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Northumberland Marine SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Dungeness, Romney Marsh and	Direct disturbance and displacement due to work activity and
Rye Bay SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Farne Islands SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Solent and Southampton Water	Direct disturbance and displacement due to work activity and
SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Complete Fig.

	OFFSHORE WIND
Designations	Impacts Considered in Matrices
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Firth of Forth SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
Fourth John de CDA	Indirect impacts through effects on habitats and prey species
Forth Islands SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
Poole Harbour Ramsar	Indirect impacts through effects on habitats and prey species
Poole Harbour Kallisar	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Poole Harbour SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Imperial Dock Lock, Leith SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Firth of Tay and Eden Estuary SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species

	OFFSHORE WIND
Designations	Impacts Considered in Matrices
Chesil Beach and The Fleet SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Fowlsheugh SPA	Direct disturbance and displacement due to work activity and
i Owisheugh SFA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Ythan Estuary, Sands of Forvie and	Direct disturbance and displacement due to work activity and
Meikle Loch SPA	vessel movements in both the offshore and intertidal zones
Wichie Local St / C	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Ythan Estuary and Meikle Loch	Direct disturbance and displacement due to work activity and
Ramsar	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Troup, Pennan and Lion's Heads	Direct disturbance and displacement due to work activity and
SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
East Caithness Cliffs SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
North Caithness Cliffs SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones

Designations	Impacts Considered in Matrices
Designations	·
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Pentland Firth Islands SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Hoy SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Marwick Head SPA	Direct disturbance and displacement due to work activity and
	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Fair Isle SPA	
rail isle SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Collision risk
	5 ,
West Westray SPA	•
	·
	•
	Collision risk
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Papa Westray (North Hill and	Direct disturbance and displacement due to work activity and
Holm) SPA	vessel movements in both the offshore and intertidal zones
	Direct disturbance and displacement due to the presence of
	array infrastructure
	Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones

Designations	Impacts Considered in Matrices
	Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Sumburgh Head SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds
	Indirect impacts through effects on habitats and prey species
Noss SPA	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk
	Barrier effects for migratory waterbirds
Fetlar SPA	Indirect impacts through effects on habitats and prey species Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of
	array infrastructure Collision risk
	Barrier effects for migratory waterbirds
Hermaness, Saxa Vord and Valla Field SPA	Indirect impacts through effects on habitats and prey species Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Transboundary sites for Lesser black-backed gull (3 sites)	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species
Transboundary sites for Northern fulmar (9 sites)	Direct disturbance and displacement due to work activity and vessel movements in both the offshore and intertidal zones Direct disturbance and displacement due to the presence of array infrastructure Collision risk Barrier effects for migratory waterbirds Indirect impacts through effects on habitats and prey species

	OFFSHORE WIND										
Designations	Impacts Considered in Matrices										
Transboundary sites for Manx	Direct disturbance and displacement due to work activity and										
shearwater (4 sites)	vessel movements in both the offshore and intertidal zones										
	Direct disturbance and displacement due to the presence of										
	array infrastructure										
	Collision risk										
	Barrier effects for migratory waterbirds										
	Indirect impacts through effects on habitats and prey species										
Migratory fish											
Humber Estuary SAC	Underwater noise,										
	Suspended sediment / deposition,										
	Indirect pollution,										
	Accidental pollution,										
	Electromagnetic field (EMF),										
	Invasive Non-Native Species (INNS),										
	Physical habitat loss / disturbance,										
	Changes to prey										
	In-combination effects										
River Derwent SAC	Underwater noise,										
	Suspended sediment / deposition,										
	Indirect pollution,										
	Accidental pollution,										
	Electromagnetic field (EMF),										
	Invasive Non-Native Species (INNS),										
	Physical habitat loss / disturbance,										
	Changes to prey										
	In-combination effects										
Onshore ecology	in combination effects										
Humber Estuary SPA	Risk of disturbance/displacement,										
Tramber Escaary Stric	Loss of foraging, roosting and nesting habitat for birds outside										
	the SPA,										
	Risk of pollution,										
Humber Estuary Ramsar Site	Loss of estuary habitats,										
Humber Estuary Ramsar Site	Risk of disturbance/displacement,										
	Loss of foraging and roosting habitat for birds outside the										
	RAMSAR site,										
	Risk of pollution,										
Humber Estuary SAC											
Humber Estuary SAC	Risk of loss or damage to estuary habitats										
Colubbantha, The shall still a control	Risk of pollution										
Saltfleetby-Theddlethorpe Dunes	Risk of loss, damage and/or disturbance of habitats										
& Gibraltar Point SAC	Disturbance of species										
TI 144 CDA	Risk of pollution										
The Wash SPA	Risk of disturbance/displacement,										
	Loss of foraging, roosting and nesting habitat,										
	Risk of pollution,										
The Wash Ramsar Site	Risk of loss or damage to habitats,										

Designations	Impacts Considered in Matrices
	Risk of disturbance/displacement,
	Loss of foraging, roosting and nesting habitat,
	Risk of pollution,
The Wash & North Norfolk Coast	Risk of loss or damage to habitats,
SAC	Risk of disturbance,
	Loss of foraging, roosting and nesting habitat,
	Reduction of habitat quality,
	Displacement of otter and reduction of otter habitat
Greater Wash SPA	Risk of loss of or damage to habitats,
	Risk of disturbance/displacement,
	Loss of foraging, roosting and nesting habitat,
	Risk of pollution,
Gibraltar Point SPA	Risk of disturbance/displacement,
	Loss of foraging, roosting and nesting habitat,
	Risk of pollution,
Gibraltar Point Ramsar Site	Risk of loss of or damage to habitats,
	Risk of disturbance,
	Loss of foraging, roosting and nesting habitat,
	Risk of pollution,
	Loss or decline in populations of scarce invertebrates and
	plants,
North Norfolk SPA	Risk of disturbance/displacement,
	Loss of foraging, roosting and nesting habitat,
North Norfolk RAMSAR	Risk of disturbance/displacement,
	Loss of foraging, roosting and nesting habitat,

3.1 Sites designated with subtidal and intertidal benthic ecology features

Matrix 1: North Norfolk Sandbanks and Saturn Reef SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	North Norfolk Sandbanks and Saturn Reef SAC UK0030358 5.9 km to array / 17.7 km to ECC / 0.0 km to ANS / 39.5 km to biogenic reef / 69.6km to ORCP																							
Effect	sedin	ended nent / sition		Indirect pollution			Accidental pollution			INNS			Changes to physical processes			Physical habitat loss / disturbance			EMF			In-combination effects		
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Reefs	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	Хс		Хс		Хс		√d	√d	√d
Sandbanks which are slightly covered by sea water all of the time	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	Хс		Хс		Хс		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the SAC, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- \sqrt{d} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 2: Inner Dowsing, Race Bank, and North Ridge SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Inner Dowsing, Race Bank, and North Ridge SAC UK0030370 17.8 km to array / 0.0 km to ECC / 30.0 km to ANS / 0.0 km to biogenic reef / 0.0 to ORCP																								
Effect	Physical habitat Suspended sediment / deposition						Indire	ct pollu	ıtion		Accidental pollution			INNS			Changes to physical processes			EMF			In-combination effects		
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	
Reefs	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		√a		√c	√c	√c	
Sandbanks which are slightly covered by sea water all of the time		√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		√a		√c	√c	√c	

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the SAC, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 3: The Wash and North Norfolk Coast SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK001	.7075	North N ay / 13.4				to ANS	/ 0.0 kn	n to bio	genic re	eef / 19).3km to	ORCP											
Effect		al habita	at loss /	Suspended sediment /			Indire	Indirect pollution			Accidental pollution		INNS			Changes to			EMF			In-combination		
					sition					poliu	uon					physical processes						effects		
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all of the time	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Mudflats and sandflats not covered by seawater at low tide	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Large shallow inlets and bays	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Reefs	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Salicornia and other annuals colonizing mud and sand	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Atlantic salt meadows (Glauco- Puccinellietalia maritimae)	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the SAC, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- \sqrt{d} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 4: Humber Estuary Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11	031 (66	uary Ran 53) Irray / 12		to ECC /	['] 47.5 kr	n to AN	S / 18.2	km to	biogeni	c reef /	15.3km	to ORC	CP										
Effect	· ·	cal hab disturk		Suspe sedin depo			Indire	ect poll	ution	Accid pollu			INNS			Chang		hysical	EMF			In-cor effect	nbinati s	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	О	D
Dune systems with humid dune slacks	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Estuarine waters	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Intertidal mud and sand flats	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Saltmarshes	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Coastal brackish/saline lagoons	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the SAC, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- √d It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 5: Humber Estuary SAC

Name of Humber Estuary SAC

designated site:

Site Code: UK0030170

Closest Distance 54.4 km to array / 18.5 km to ECC / 47.5 km to ANS / 23.8 km to biogenic reef / 19.7km to ORCP

to Project

Likely Effects of Project

Effect		al habita oance	nt loss /	Susper / depo	nded sed sition	diment	Indired	ct polluti	on	Accide	ntal poll	ution	INNS			Change proces	es to ph ses	ysical	EMF			In-com effects	nbinatior S	1
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuaries	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Mudflats and sandflats not covered by seawater at low tide	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Sandbanks which are slightly covered by sea water all the time	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Salicornia and other annuals colonizing mud and sand	1		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Atlantic salt meadows	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the SAC, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- √d It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 6: Gibraltar Point Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11	027 (58	int Rams 89) array / 13		to ECC /	⁷ 70.5 kn	n to AN	S / 1.6	km to bi	iogenic	reef / 1	9.3km t	to ORCP	,										
Effect		cal hab disturl		sedin	ended nent / sition		Indire	ect poll	ution	Accid pollu			INNS			Chang proce		hysical	EMF			In-cor effect	nbinatio s	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	О	D	С	0	D	С	0	D	С	0	D	С	0	D
Estuarine mudflats	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Sandbanks	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Saltmarsh	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d
Dunes	Хс		Хс	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хс		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the site, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- √d It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 7: The Wash Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11	Vash Ran 072 (395 km to arr)	4 km to	ECC / 7	4.0 km to	ANS / S	3.8 km t	o bioger	nic reef /	[/] 22.7km	to ORCF)											
Effect		cal habita	at loss /		nded se	ediment	Indire	ct pollu	tion	Accid	ental po	llution	INNS			Chang	ges to ph	nysical	EMF			In-con effect	nbinatio s	n
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Saltmarshes	Хa	Хa	Хa	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хa		√d	√d	√d
Estuaries	Хa	Хa	Хa	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хa		√d	√d	√d
Major intertidal banks of sand and mud	Ха	Ха	Ха	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Ха		√d	√d	√d
Shallow water	Хa	Хa	Хa	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Хa		√d	√d	√d
Deep channels	Хa	Хa	Хa	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b		Ха		√d	√d	√d

Evidence supporting conclusions

- Ja Based on proximity to the proposed development, it is considered that potential effects may reach the site, within which the features are located. Therefore, a finding of potential LSE is appropriate.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- Due to the distance of the site, physical habitat loss/ disturbance and EMF effects are not anticipated to arise due to the distance from the site. EMF effects only arise from the cables when in operation and therefore there is no pathway for effect for EMF during construction and decommissioning. Therefore, there is no LSE for either of these effects.
- \sqrt{d} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

3.2 Sites designated with marine mammal features

Matrix 8: Southern North Sea SAC

Name of designated site: Southern North Sea SAC

Site Code: UK0030395

Closest Distance to Project 0.0 km to array / 1.1 km to ECC / 0.0 km to ANS / 34.7 km to biogenic reef / 42.3km to ORCP

(Offshore)

Likely Effects of Project

Linery Linears of Froject																								
Effect	Unde	erwater	noise	Vesse	l disturb	ance	Collisi	on risk		Indire	ct pollut	ion	Accide	ental po	llution	Habita	at loss		Chang	es to pr	ey	In-co	mbinatio	on
																						effect	.s	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour porpoise	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√a	√a	√b	√c	√c	√c

Evidence supporting conclusions

- √a Table 5.4 of the HRA Screening Report (Appendix 7.2 of the RIAA) considers that The Project is located within 0 km of the SAC. Therefore, due to proximity to the source there is potential for a likely significant effect (LSE).
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 9: Humber Estuary SAC

Name of designated site: Site Code: Closest Distance to Project (offshore) Likely Effects of Project	UKOC	30170			m to E	CC / 47	'.5 km t	to ANS	/ 23.8	km to	biogen	ic reef	/ 19.7k	km to (ORCP												
Effect	Unde	erwate	r	Vess	el		Collis	sion ris	sk	Indir	ect pol	lution	Accio	dental		Chan	ges to	prey	Habit	at loss		Distu	ırbance	at haul	In-co	mbina	tion
	noise	<u>.</u>		distu	ırbance	9							pollu	ition								out			effec	ts	
Stage of Development	С	0	D	С	0	D	С	0	С	С	С	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√g	√g	√g	Хe	Хe	Хe	√c	√c	√b	√f	√f	√f

Evidence supporting conclusions

- Va Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between grey seal and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased rates of vessel disturbance of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- √d The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased collision risk of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.

 Therefore, a finding of no potential LSE is appropriate
- √f It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.
- \sqrt{q} The site is within the maximum range for these effects as informed by modelling and therefore there is a potential for an LSE.

Matrix 10: Humber Estuary Ramsar

Name of designated site: Humber Estuary RAMSAR

Site Code: UK0030170

Closest Distance to Project 54.0 km to array / 12.1 km to ECC / 47.5 km to ANS / 18.2 km to biogenic reef / 15.3 km to ORCP

(offshore)

Likely Effects of Project

Likely Effects of Project																											
Effect	Unde	rwate	r noise	Vesse	el		Collis	ion ris	k	Indire	ect poll	ution	Accid	lental		Chan	ges to	prey	Habit	at loss		Distu	rbance	e at	In-co	mbinat	ion
				distu	rbance								pollu	tion								haul	out		effec	ts	
Stage of Development	С	0	D	С	0	D	С	0	С	С	С	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey seal	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√g	√g	√g	Хe	Хe	Хe	√c	√c	√b	√f	√f	√f

Evidence supporting conclusions

- √a Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between grey seal and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the site (Vincent et al., 2017) may result in increased rates of vessel disturbance of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- √d The location of the project relative to the at sea usage area of grey seal together with connectivity to the site (Vincent et al., 2017) may result in increased collision risk of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.

 Therefore, a finding of no potential LSE is appropriate
- \sqrt{f} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.
- \sqrt{q} The site is within the maximum range for these effects as informed by modelling and therefore there is a potential for an LSE.

Matrix 11: The Wash and North Norfolk Coast SAC

Name of designated site: Site Code:		Wash a 17075	and Nor	th Nor	folk Co	ast SA	С																				
Closest Distance to Proj	ect 48.4	km to	array /	13.4 kı	n to EC	C / 50	.4 km t	o ANS	/ 0.0 kr	n to bi	ogenic	reef / :	19.3km	to OR	СР												
(offshore)																											
Likely Effects of Project																											
Effect	Unde	rwate	r noise	Vess	el		Collis	ion ris	k	Indire	ect poll	ution	Accid	lental		Chan	ges to	prey	Habit	at loss		Distu	rbance	e at	In-co	mbinat	ion
				distu	rbance								pollu	tion								haul	out		effec	ts	
Stage of Development	С	0	D	С	0	D	С	0	С	С	С	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Harbour seal	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√a

Evidence supporting conclusions

- Va Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between harbour seal and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased rates of vessel disturbance of harbour seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased collision risk of harbour seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.

 Therefore, a finding of no potential LSE is appropriate
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result changes to prey of harbour seal. Therefore, a finding of potential LSE is appropriate.
- \sqrt{g} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 12: Berwickshire and North Northumberland Coast SAC

Name of designated	Berwi	ckshire	and No	orth No	rthumb	erland	Coast S	SAC																			
site:																											
Site Code:	UK003	30395																									
Closest Distance to	260.4	km to a	rray / 2	262.0 k	m to E0	CC / 232	2.6 km t	to ANS	/ 259.2	km to	bioger	nic reef	/ 262.0	km to	ORCP												
Project (Offshore)																											
Likely Effects of Project																											
Effect	Unde	erwater	noise	Vesse	l distur	rbance	Collis	ion risk		Indire	ect poll	lution	Accid	ental		Chan	ges to p	rey	Habit	at loss		Distu	rbance	at	In-cor	nbinati	on
													pollu	tion								haul	out		effect	S	
Stage of Development	C	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey Seal	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f	Хe	Хe	Хe	Хe	Хe	Хe	√g	√g	√g

Evidence supporting conclusions

- Va Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between grey seal and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased rates of vessel disturbance of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- √d The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased collision risk of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- No potential for LSE. These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result changes to prey of grey seal. Therefore, a finding of potential LSE is appropriate.
- \sqrt{q} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 13: Moray Firth SAC

Name of designated site: Site Code: Closest Distance to Project (Offshore)	UKOO	y Firth S 19808 km to a		525.5 k	m to EC	C / 487	.0 km to	o ANS /	521.2 k	m to bi	ogenic	reef / 52	25.5km	to ORC	(P									
Likely Effects of Project																								
Effect	Unde	rwater	noise	Vesse	el distur	bance	Collis	ion risk		Indire	ect poll	ution	Accid pollut			Chan	ges to p	rey	Habit	at loss		In-cor effect	mbinati ts	ion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Bottlenose dolphin	√a	√a	√b	√a	√a	√b	√a	√a	√b	Хс	Хс	Хс	Хс	Хс	Хс	√a	√a	√b	Хс	Хс	Хс	√a	√a	√a

Evidence supporting conclusions

√a	Potential for site connectivity is indicated from photo-identification data. Therefore, there is the potential for some level of interaction between bottlenose dolphin associated with the Moray Firth
	SAC and these effects from the project. The impacts during decommissioning are considered to be similar and potentially less than those outlined in the construction phase.

The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.

No potential for LSE. These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.

End of Matrix 13

Хc

Matrix 14: Transboundary sites for Harbour porpoise (12 sites)

Name of designated site: Transboundary sites for Harbour porpoise (12 sites)

Site Code: Various
Closest Distance to Project Various

(Offshore)

Likely Effects of Project

Effect	Unde	rwater r	noise	Vesse	l distur	oance	Collisi	on risk		Indire	ct pollu	tion	Accide	ental po	llution	Habita	at loss		Chan	ges to p	rey	In-co	mbinatio :s	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Bancs de Flandres SCA	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa
Doggersbank (Netherlands) SAC;	Ха	Ха	Ха	Хa	Ха	Ха	Ха	Ха	Хa	Хa	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Хa	Ха	Ха	Ха	Ха	Ха
Klaverbak SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa
Noordzeekustone SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
SBZ 1 SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
SBZ 2 SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
SBZ 3 SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
Vlaamse Banked SCI;	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
Vlakte van de Raan SCI;	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
Voordelta SCI;	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa
Waddenzee SCI; and	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa
Westerschelde & Saeftinghe SCI.	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Ха	Хa	Ха	Хa	Хa	Ха	Ха	Хa

Evidence supporting conclusions

Xa All sites have been screened out based on a lack of evidence to suggest connectivity (no site within 26 km effective disturbance range (EDR) of the Project). Therefore, a finding of no LSE is appropriate.

Matrix 15: Transboundary sites for Harbour seals (12 sites)

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Trans Vario Vario		ary site	es for H	larbou	r and G	irey sea	als (12 :	sites)																		
Effect	Unde	erwater	noise	Vesse distu			Collis	ion risl	(Indire	ect poll	ution	Accid pollu			Chan	ges to	prey	Habit	at loss		Distu haul	rbance out	at	In-co effec	mbinat ts	ion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Doggersbank (Netherlands) SAC;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
Klaverbak SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f

Evidence supporting conclusions

- Va Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between seals and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase. Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased rates of vessel disturbance of seals (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased collision risk of seals (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- No potential for LSE. These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.
- √f It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 16: Transboundary sites for Grey seals (12 sites)

Name of designated Transboundary sites for Harbour and Grey seals (12 sites)

site:

Site Code: Various Closest Distance to Various

Project

Likely Effects of Project

Effect	Und	erwate	r noise	Vesse	l disturb	ance	Collisi	on risk		Indire			Accid pollu	dental Ition		Chang	es to prey	/	Habi	tat los	S	Distu haul	irbanc out	e at	In- com effe	ıbinat	ion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Bancs de Flandres SCA;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хе	Хe	Хe	Хe	Хe	√a	√a	√b	Хе	Хе	Хe	Хе	Хе	Хe	√f	√f	√f
Doggersbank (Netherlands) SAC;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хе	Хе	Хе	Хe	Хe	√f	√f	√f
Klaverbak SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
Noordzeekustone SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хе	Хe	√a	√a	√b	Хе	Хe	Хe	Хe	Хe	Хе	√f	√f	√f
SBZ 1 SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
SBZ 2 SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
SBZ 3 SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
Vlaamse Banked SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
Vlakte van de Raan SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хе	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хе	Хе	Хе	Хe	Хe	√f	√f	√f
Voordelta SCI;	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хe	Хe	Хe	Хe	√f	√f	√f
Waddenzee SCI; and	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хe	Хe	Хe	√a	√a	√b	Хe	Хe	Хе	Хе	Хе	Хe	√f	√f	√f
Westerschelde & Saeftinghe SCI.	√a	√a	√b	√c	√c	√b	√d	√d	√b	Хe	Хe	Хe	Хе	Хе	Хe	√a	√a	√b	Хe	Хе	Хе	Хе	Хe	Хе	√f	√f	√f

Evidence supporting conclusions

- √a Potential for site connectivity is indicated from seal use at sea data (Vincent et al., 2017). Therefore, there is the potential for some level of interaction between grey seal and underwater noise associated with the Project. Potential for LSE concluded.
- The HRA Screening Report (Appendix 7.2 of the RIAA) considers that the effects from The Project during decommissioning are similar and potentially less intense than those outlined in the construction phase.

 Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased rates of vessel disturbance of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- The location of the project relative to the at sea usage area of grey seal together with connectivity to the SAC (Vincent et al., 2017) may result in increased collision risk of grey seal (with vessels associated with activity relating to the Project). Therefore, a finding of potential LSE is appropriate.
- No potential for LSE. These effects have been screened out from assessment as a result of the distance between the Project and the designated site, the scale of the potential change and the scale and extent of alternative habitat.
- √f It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

3.3 Sites designated with offshore and intertidal ornithology features

Matrix 17: Greater Wash SPA

of Greater Wash SPA Name designated site: Site Code: UK9020329 Closest Distance 24.6 km to array, 0.0km to ECC to Project Likely Effects of Project Effect Direct disturbance and Direct disturbance and Collision risk due to the Barrier effects due to the Indirect impacts through In combination effects displacement due to work activity displacement due to the presence of turbines presence of turbines effects on habitats and prey presence of turbines and vessel movements in both the species offshore and intertidal zones 0 0 0 0 0 0 Stage Development √c Common √a √a √a √a √a √a √a √a √c √c scoter Red-throated √c √a √a √a √a √a √a √a √a √c √c diver Little gull Χb √c Χb Χb Χb Χb Χb √a √a Χb Little tern Χb Χb Χb Χb Χb √a √a √c Common tern Χb Χb Χb Χb Χb Χb √a √a √c Sandwich tern Xb Xb Χb √a √a Χb Χb Χb √c

Evidence supporting conclusions

- The cable corridor directly overlaps with this SPA with red-throated diver and common scoter having high or very high vulnerability to disturbance/displacement from offshore wind farms and vessel disturbance. All other features have low vulnerability to disturbance and displacement (Bradbury et al., 2014; Dierschke et al., 2016; Fliessbach et al., 2019). The pathway to insufficient prey resource is weak for all designated features. Temporary and low-impact effects are anticipated for local fish and benthic ecology. As such, there would be sufficient alternative resource available to support the species population. There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions.
- The Project array is beyond the mean-maximum +1SD foraging range (Woodward *et al.*, 2019) for all designated breeding seabird species and therefore has no breeding season connectivity. All species may be vulnerable to collisions for this site, but have low sensitivity. As agreed with Natural England, Sandwich tern has been screened out for displacement, and little gull and common tern have been assessed for migratory collision risk.
- It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 18: Humber Estuary Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11031	Estuary Ram (663) to array, 12.2																
Effect	activity a	disturband ment due and vessel n the offs I zones	to work novements	displacem presence		to the		risk due of turbines	to the		effects due of turbines	e to the		impacts th habitats and		In co		ation
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
European golden plover	Хb	Хb	Хb	Χb	Хb	Хb		√a			√a						√a	
Red knot	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	
Dunlin	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	
Black-tailed godwit	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	
Common redshank	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	
Common shelduck	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	
Bar-tailed godwit	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√a	

Evidence supporting conclusions

There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions. The pathway to insufficient prey resource is weak for all designated features. Temporary and low-impact effects are anticipated for local fish and benthic ecology. As such, there would be sufficient alternative resource available to support the species population.

Therefore, LSE cannot be discounted in relation to all effects alone.

Wintering waterbirds are not prone to displacement impacts due to the distance from the ECC to the site exceeding 2km.

Matrix 19: Humber Estuary SPA

Name of Humber Estuary SPA

designated site:

Site Code: UK9006111

Closest Distance 54.0 km to array, 12.1 km to ECC

to Project

Likely Effects of Project

Likely Effects of Proj	ect																	
Effect		nce and displacen		Direct	disturban			n risk due to	the	Barrie	er effects	due to			through		ombin	ation
			both the offshore			he presence	presenc	e of turbines		the	presence	e of		n habitats	and prey	effe	cts	
	and intertidal z	ones		of turbine	S					turbir	nes		species					
Stage of	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Development																		
Avocet	Хb	Хb	Хb	Χb	Хb	Хb		√a			√a						√c	
Bar-tailed godwit	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Bittern	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Black-tailed	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
godwit																		
Dunlin	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Golden plover	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Hen harrier	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Knot	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Little tern	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Marsh harrier	Хb	Хb	Хb	Xb	Хb	Хb		√a			√a						√c	
Redshank	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Ruff	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Shelduck	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Pink-footed goose	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Wigeon	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Ringed plover	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Curlew	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Sanderling	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Oystercatcher	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Dark-bellied brent	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
goose																		
Mallard	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Pochard	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Goldeneye	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Scaup	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	

- There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions. The pathway to insufficient prey resource is weak for all designated features. Temporary and low-impact effects are anticipated for local fish and benthic ecology. As such, there would be sufficient alternative resource available to support the species population.

 Therefore, LSE cannot be discounted in relation to all effects alone.
- Wintering waterbirds are not prone to displacement impacts due to the distance from the ECC to the SPA exceeding 2km.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 20: North Norfolk Coast SPA

Name of North Norfolk Coast SPA

designated site:

Site Code: UK9009031

Closest Distance 57.2 km to array, 29.9 km to ECC

to Project

Likely Effects of Pro	ject																	
Effect		ssel movements in	ment due to work I both the offshore	Direct displacem of turbine		nce and the presence		n risk due to t e of turbines	he	Barrie the turbin	r effects presence es			impacts on habitats			combina cts	ition
Stage of	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Development																		
Dark-bellied brent goose	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Eurasian marsh harrier	Хb	Xb	Xb	Хb	Хb	Хb		√a			√a						√c	
Eurasian wigeon	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Great bittern	Χb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Pied avocet	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Pink-footed goose	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Red knot	Хb	Хb	Хb	Хb	Хb	Хb		√a			√a						√c	
Sandwich tern	Хb	Хb	Xb	Хb	Хb	Хb		√a			√a						√c	
Common tern	Хb	Хb	Xb	Хb	Χb	Хb		√a			√a						√c	
Little tern	Хb	Xb	Xb	Хb	Χb	Хb		√a			√a						√c	
Assemblage features	Хb	Xb	Xb	Хb	Хb	Хb		√a			√a						√c	

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. There is potential √a for migratory seabird and waterbirds to be impacted by the array through barrier effects and collisions.

The maximum site-specific foraging range for Sandwich tern from this site is 54 km (Woodward et al., 2019), therefore the Project is beyond the range of this species from this location. Sandwich tern has been screened out for displacement effects and screened in for collision risk.

Therefore, LSE cannot be discounted in relation to all effects alone.

- Χb The Project array is beyond the disturbance impact range for designated species and therefore has no connectivity. Therefore, LSE can be discounted in relation to these effects alone.
- It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination. √c

Matrix 21: Gibraltar Point Ramsar

Name of Gibraltar Point Ramsar designated site: Site Code: UK11027 (589) Closest Distance 63.1 km to array, 13.3 km to ECC to Project Likely Effects of Project Direct disturbance and displacement due to work Direct disturbance Collision risk due to the Barrier effects due to Indirect impacts through activity and vessel movements in both the offshore displacement due to the presence presence of turbines the presence effects on habitats and prey effects and intertidal zones of turbines turbines species D C of C 0 0 0 Stage Development Grey plover Χa Χa Χa Χa Χa √b √b √c Χa Sanderling Χa Χa Χa Χa Χa Χa √b √b √c Dark-bellied brent Χa Χa Χa Χa Χa Χa √b √b √c goose Bar-tailed godwit Χa Χa √b √b √c Χa Χa Χa Χa

Evidence supporting conclusions

Xa The Project array is beyond the disturbance impact range for designated species and therefore has no connectivity. Therefore, LSE can be discounted in relation to these effects alone.

√b There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions on migration.

Therefore, LSE cannot be discounted in relation to these effects alone.

 \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 22: Gibraltar Point SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9008		A ′ 13.3 km to	ECC / 70.5	5 km to AN	S / 1.6 km	to biogen	ic reef / 1	9.3 km to C	DRCP								
Effect	activity moveme	ment due and ents in	nce and to work vessel both the tidal zones	displace:	ment due e of				migratory	Barrier e waterbir		migratory			through and prey		oination ef	fects
Stage of Development	С	О	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Grey plover	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Sanderling	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Little Tern	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Bar-tailed godwit	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated species and therefore has no breeding season connectivity. The Project array is beyond the disturbance impact range for designated waterbird species and therefore has no connectivity. Therefore, LSE can be discounted in relation to these effects alone.
- There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions. Therefore, LSE cannot be discounted in relation to these effects alone.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 23: The Wash Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11072		16.4 km to	ECC / 74.0) km to A	NS / 3.8 km	to biogen	ic reef / 2	2.7 km to O	RCP								
Effect	activity moveme	disturbar ment due and ents in l and intert	to work vessel both the	presence	e of	ie to the			migratory	Barrier waterk	effects for birds	migratory	Indirect effects of species		through s and prey	In-comb	ination eff	ects
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Eurasian oystercatcher	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Grey plover	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Red knot	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Sanderling	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Eurasian curlew	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Common redshank	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Ruddy turnstone	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Pink-footed goose	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Dark-bellied brent goose	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Common shelduck	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Northern pintail	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Dunlin	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Bar-tailed godwit	Ха	Ха	Хa	Ха	Ха	Хa		√b			√b						√c	

Evidence supporting conclusions

The Project array is beyond the disturbance impact range for designated species and therefore has no connectivity. Therefore, LSE can be discounted in relation to these effects alone.

There is potential for migratory waterbirds to be impacted by the array through barrier effects and collisions on migration. Therefore, LSE cannot be discounted in relation to all effects alone.

 \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 24: The Wash SPA

Name of designated	The Was	h SPA																
site:	111/00000	24																
Site Code: Closest Distance to	UK90080		16.4 km to	FCC / 74 C) km to AN	5 / 3 8 km t	o hiogenic	reef / 22	2.7 km to OR	CP								
Project	00.5 Kill	to array /	10.4 Km to	200 / 74.0	A KITI CO A II G	7 J.O KIII C	o piobeilie	71001 / 22	2.7 Km to on	Ci								
Likely Effects of Project																		
Effect	Direct	disturba		Direct	disturbar		Collision		migratory		effects for	migratory	Indirect		through	In-comb	ination eff	ects
			to work		ment due		waterbir	ds		waterbir	ds			on habitat	s and prey			
	activity	and nts in	vessel both the	presence infrastru		array							species					
			tidal zones	IIIIIastitu	icture													
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C	0	D
Bar-tailed godwit	Ха	Хa	Хa	Ха	Хa	Хa		√b			√b						√c	
Common scoter	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Black-tailed godwit	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Common goldeneye	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Common redshank	Ха	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Common shelduck	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
Dark-bellied brent	Хa	Хa	Хa	Хa	Хa	Хa		√b			√b						√c	
goose			1															
Dunlin	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Eurasian curlew	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Eurasian oystercatcher	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Eurasian wigeon	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Gadwall	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Grey plover	Ха	Ха	Ха	Ха	Ха	Ха		√b			√b						√c	
Northern pintail Pink-footed goose	Xa	Xa	Ха	Ха	Ха	Ха		√b /b			√b						√c	
Red knot	Xa Xa	Xa	Xa	Xa	Xa	Xa		√b √b			√b √b						√c √c	
Ruddy turnstone	Ха	X a	X a	Xa Xa	X a	X a		√b			√b						√c	
Sanderling	Xa	Xa	Xa	Χa	Xa	Xa		√b			√b						√c	
Tundra swan	Xa	Ха	Xa	Xa	Xa	Xa		√b			√b						√c	
Common tern	Xa	Xa	Xa	Xa	Xa	Xa		√b			√b						√c	
Little tern	Xa	Xa	Xa	Xa	Xa	Xa		√b			√b						√c	
Assemblage features	Xa	Xa	Xa	Xa	Xa	Xa		√b			√b						√c	
, ascinsiage realares	Λα	^ a	^ a	/ a	^ a	Λα		VU			Vυ						VC	

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated species and therefore has no breeding season connectivity. The Project array is beyond the disturbance impact range for designated waterbird species and therefore has no connectivity. Therefore, LSE can be discounted in relation to these effects alone.

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. There is potential for migratory waterbirds and seabirds to be impacted by the array through barrier effects and collisions.
 - Therefore, LSE cannot be discounted in relation to these effects alone.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 25: Great Yarmouth North Denes SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9009	271	North Dene / 73.1 km t		9.8 km to <i>i</i>	ANS / 58.6	km to bio	genic ree	ef / 93.8 km	1 to ORCP								
Effect	displace activity movem	ement du and ents in	nce and e to work vessel both the intertidal	displace present infrastr	ement du e of				migratory		effect ry waterbi			impacts on habit ecies		In-comb	ination ef	fects
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity. The Project concludes negligible potential for impact on migratory birds from this SPA passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone.

Matrix 26: Flamborough and Filey Coast SPA

matrix zor riamborough and riney coa																		
Name of designated site: Site Code:	Flambo UK900	_	d Filey Coa	st SPA														
Closest Distance to Project		n to array																
Likely Effects of Project	33.3 KI	ii to array																
Effect	activity moven	ement du	ance and ue to work vessel both the intertidal	displac	disturb ement di ce of turbii	ue to the		risk due of turbine:				due to turbines	throu	igh effo ats an	mpacts ects on d prey	In co	ombini cts	ation
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Хb	Хb	Хb	Хb	Хb	Хb		√a		Хb	Хb	Хb					√d	
Herring gull	Хb	Хb	Хb	Хb	Хb	Хb		√a		Хb	Хb	Хb					√d	
Gannet	√c	√c	√c	√c	√c	√c		√a		Хb	Хb	Хb				√d	√d	√d
Guillemot	√c	√c	√c	√c	√c	√c	Хb	Χb	Хb	Хb	Хb	Χb				√d	√d	√d
Razorbill	√c	√c	√c	√c	√c	√c	Хb	Χb	Хb	Хb	Хb	Χb				√d	√d	√d
Puffin	√c	√c	√c	√c	√c	√c	Хb	Χb	Хb	Хb	Хb	Χb				√d	√d	√d
Fulmar	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Χb	Хb	Хb	Хb	Хb						
European shag	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb						
Cormorant	Хb	Хb	Хb	Хb	Хb	Хb	Χb	Хb	Хb	Хb	Хb	Хb						

Evidence supporting conclusions

- These designated features are either beyond mean-maximum +1SD foraging range or not deemed sensitive to these offshore wind farm impacts (Bradbury *et al.,* 2014; Dierschke *et al.,* 2016). Therefore there is not potential for LSE.
- The Project array is within the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has breeding season connectivity. Certain designated features have high or very high vulnerability to displacement from offshore windfarms (Bradbury *et al.*, 2014; Dierschke *et al.*, 2016). Therefore, there is a potential for LSE.

 Therefore, guillemot, razorbill, gannet and puffin have potential LSE for disturbance and displacement impacts during all phases.
- The Project array is within the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore, has breeding season connectivity. Certain designated features have high or very high vulnerability to collision risk with turbines (Bradbury *et al.,* 2014). Therefore, there is a potential for LSE.
- √d It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 27: Outer Thames Estuary SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK902	0309	stuary SPA	to ECC / 8	82.4 km to	ANS / 69.7	km to bi	ogenic re	eef / 104.0 k	m to OR	СР							
Effect	activity moven	ement du	ue to work	displac presen infrast	cement du ice of				migratory		effec ory waterb			on habi	through tats and	In-com	oination e	ffects
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Red-throated diver	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Хa	Хa	Ха

Evidence supporting conclusions

Хa

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. The Project array is beyond the disturbance impact range for designated species and therefore has no connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone.

Matrix 28: Alde-Ore Estuary Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK1100	re Estuary 02 (862) m to array		n to ECC/	136.2 km to	o ANS / 110	.4 km to b	iogenic ree	ef / 139.2 km	n to ORCP							
Effect	activity	and ents in	e to work	work displacement due to the vessel presence of array infrastructure infrastructure waterbirds waterbirds through effects on habitats and prey effects species													
Stage of Development	С	О	D	С	0	D	С	0	D	С	0	D	С	0	D	С	O D
Lesser black-backed gull	Хb	Хb	Хb	Хb	Хb	Хb		√a		Хb	Хb	Хb				Хb	√c Xb
Pied avocet	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Xb Xb
Common redshank	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Xb Xb

Evidence supporting conclusions

- √a On the advice of Natural England, potential for LSE on Lesser black-backed gull due to collisions is screened in for the non-breeding season. Therefore, LSE cannot be discounted in relation to all effects alone.
- The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 29: Alde-Ore Estuary SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9009			n to ECC / :	136.2 km t	o ANS / 110	.4 km to b	ogenic ree	f / 139.2 km	n to ORCP								
Effect	activity	and ents in	nce and to work vessel both the intertidal	presence infrastru			Collision: waterbir		migratory	Barrier e waterbire		migratory		gh effe nts and	impacts ects on d prey	comb		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Lesser black-backed gull	Хb	Хb	Хb	Хb	Хb	Хb		√a		Хb	Хb	Хb				Хb	√c	Χb
Pied avocet	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Хb	Χb
Common redshank	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Хb	Χb
Ruff	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Хb	Χb
Little tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Хb	Χb
Sandwich tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Хb	Хb	Χb

Evidence supporting conclusions

- √a On the advice of Natural England, potential for LSE on Lesser black-backed gull due to collisions is screened in for the non-breeding season. Therefore, LSE can not be discounted in relation to all effects alone.
- The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity. The maximum site-specific foraging range for lesser black-backed gull from this site is 124km (Woodward *et al.*, 2019), therefore the Project is beyond the range of this species from this location.

 \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 30: Northumbria Coast SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9006			n to ECC /	′ 173.6 km t	o ANS / 191	.9 km to b	ogenic re	ef / 193.2 km	n to ORCP								
Effect	activity	ement du and ents in		displace present infrastr			Collision waterbir		migratory	Barrier waterbii		or migratory	throug	gh eff its ar	impacts fects on nd prey	com	binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic Tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Χa
Little Tern	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site. Therefore, LSE can be discounted in relation to all effects alone.

Matrix 31: Foulness (Mid-Essex Coast Phase 5) SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9009	246	sex Coast P 7 / 181.1 km	ŕ		o ANS / 161	.2 km to k	iogenic re	ef / 182.3 km	n to ORCF)							
Effect	activity	ement due and ents in	nce and e to work vessel both the intertidal	displacer presence	of		Collisior waterbi		migratory	Barrier waterb		r migratory		gh eff ats an	impacts ects on id prey	com	binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Sandwich tern	Хa													Хa				

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone.

Matrix 32: Thanet Coast and Sandwich Bay SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK90120				21.7 km tc	ANS / 191	.7 km to bi	ogenic ree	f / 214.2 km	to ORCP								
Effect	displace activity	and ents in b	to work vessel	Direct displacem presence infrastruc	of		Collisions waterbird		migratory	Barrier e waterbird		migratory	throu	gh effe ts and	impacts ects on d prey	com		ons
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Xa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone.

Matrix 33: Northumberland Marine SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9020	325	Marine SP <i>i</i> / 235.3 kn		!10.8 km to	o ANS / 233	.3 km to bi	ogenic ree	f / 235.3 km	to ORCP								
Effect	Direct displace activity movement offshore zones	and ents in		displacer presence	of		Collisions		migratory	Barrier e waterbir	effects for ds	migratory	Indire throug habita specie	gh effe ats an	impacts ects on d prey	In comb effec		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Roseate tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Sandwich tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Guillemot	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Puffin	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa				Ха	Хa	Хa
Assemblage features	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa

Evidence supporting conclusions

This is a marine SPA designated for foraging seabirds. Impacts from outside the SPA are considered to have no connectivity to the site. Therefore, LSE can be discounted in relation to all effects alone.

Matrix 34: Coquet Island SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9006		[/] 258.8 km	to ECC / 2	31.0 km to <i>i</i>	ANS / 256.3	3 km to bio	genic reef	/ 258.8 km t	o ORCP						
Effect	activity moveme	disturban ment due and ents in l and intert	to work vessel ooth the	Direct displacer presence infrastru	e of				migratory	Barrier o		r migratory		igh ef ats a	impacts fects on nd prey	In combination effects
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C O D
Puffin	√a	√a	√a	√a	√a	√a										√d √d √d
Roseate tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Common tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Sandwich tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	√c	Хb	Хb	Хb	Хb				Xb <mark>√d</mark> Xb
Arctic tern	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Puffin	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Black-headed gull	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Fulmar	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Herring gull	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb
Lesser black-backed gull	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb				Xb Xb Xb

Evidence supporting conclusions

- The Project array is within the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has breeding season connectivity. Certain designated features have high or very high vulnerability to displacement from offshore windfarms (Bradbury *et al.*, 2014; Dierschke *et al.*, 2016). Therefore, there is a potential for LSE. Therefore, puffin have potential LSE for disturbance and displacement impacts during all phases.
- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site. Therefore, LSE can be discounted in relation to all effects alone.
- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. Migrations of sandwich terns in the non-breeding season are likely to result in negligible numbers passing through the site. Sandwich tern have potential LSE in relation due to collision impacts during O&M.
- √d It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 35: Dungeness, Romney Marsh and Rye Bay SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9012	091	ey Marsh a / 246.7 km	·	•	ANS / 227	.2 km to bi	ogenic ree	ef / 248.2 km	n to ORCP								
Effect	displace activity	ment due and ents in	nce and to work vessel both the intertidal	displacen presence	of		Collisions		migratory	Barrier e waterbire		migratory		gh effe ats and	impacts ects on d prey	coml		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Хa	Хa	Хa	Ха	Xa	Ха	Хa	Хa	Xa	Хa	Хa	Хa				Хa	Хa	Χa
Little tern	Хa	Хa	Хa	Ха	Ха	Ха	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Sandwich tern	Хa													Ха	Хa			

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Matrix 36: Farne Islands SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9006			n to ECC / 2	257.9 km to	o ANS / 285	.9 km to b	ogenic ree	f / 289.1 km	to ORCP								
Effect	activity	ment due and ents in	nce and e to work vessel both the intertidal	Direct displacer presence infrastruc	of		Collision: waterbir		migratory	Barrier e waterbird		migratory		gh effe ts an	impacts ects on d prey	In combi effect		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C (0	D
Kittiwake								√a								Хс	√d	Хс
Arctic tern	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Xc /	Хс	Хс
Common guillemot	√b	√b	√b	√b	√b	√b	Хс	Хс	Хс	Хс	Хс	Хс				√d 、	√d	√d
Puffin	√b	√b	√b	√b	√b	√b	Хс	Хс	Хс	Хс	Хс	Хс				√d 、	√d	√d
Roseate tern	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Xc /	Хс	Хс
Sandwich tern	Хс	Хс	Хс	Хс	Хс	Хс	Хс	√a	Хс	Хс	Хс	Хс				Хс	√d	Хс
European shag	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Xc /	Хс	Хс
Great cormorant	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Xc /	Хс	Хс
Common tern	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Xc /	Хс	Хс

Evidence supporting conclusions

- The Project array is within the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has breeding season connectivity. Designated features have high or very high vulnerability to collision risk with turbines (Bradbury *et al.*, 2014). Therefore, Kittiwake has been screened into the assessment based on potential collision risk impacts. LSE can be discounted in relation to all other species and effects alone.
- √b Natural England have advised to screen in guillemot and puffin for displacement effects.
- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- \sqrt{d} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 37: Solent and Southampton Water SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9011	061	ampton Wa		339.1 km to	o ANS / 267	'.7 km to bi	ogenic ree	f / 289.0 km	to ORCP								
Effect	Direct displace activity movement offshore zones	and ents in	nce and to work vessel both the intertidal	presence			Collisions waterbird		migratory	Barrier 6 waterbir	effects for ds	migratory	Indire throu habita specie	gh effe ats an	impacts ects on d prey	In coml effec		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Хa	Хa	Хa
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Roseate tern	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Ха				Хa	Ха	Хa
Sandwich tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха				Хa	Хa	Χa
Mediterranean gull	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха				Хa	Хa	Χa
Black-tailed godwit	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха				Хa	Хa	Χa
Ringed plover	Хa	Хa	Хa	Ха	Хa	Ха	Хa	Ха	Хa	Ха	Хa	Ха				Хa	Хa	Хa
Eurasian teal	Ха	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Ха				Хa	Хa	Хa
Dark-bellied brent goose	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Ха				Хa	Ха	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 38: St Abb's Head to Fast Castle SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	XXXXXX		ast Castle / 331.4 km		05.3 km to	ANS / 328	.9 km to bio	ogenic reef	⁻ / 331.5 km	to ORCP								
Effect	activity	ement due and ents in	vessel	displacen	of		Collisions waterbird		migratory	Barrier e waterbird		migratory		gh effe ts and	impacts ects on d prey	coml		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Guillemot	√b	√b	√b	√b	√b	√b		Ха			Ха					√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b		Ха			Ха					√c	√c	√c
Kittiwake	Хa	Хa	Ха	Ха	Ха	Ха		√b			√b						√c	

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

 Outside the breeding season, impacts LSE cannot be discounted in relation to all effects alone.
- The Project array is outside of the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has no breeding season connectivity. Designated features have high or very high vulnerability to collision risk with turbines or displacement (Bradbury *et al.*, 2014). Therefore, species have been screened in for non-breeding season impacts.
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination

Matrix 39: Firth of Forth SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9004			to ECC / 3	27.9 km to	ANS / 353	.2 km to bi	ogenic ree	f / 355.4 km	ı to ORCP								
Effect	displace activity	cement due to work displacement due to the presence of array infrastructure ore and intertidal							migratory	Barrier e waterbire		migratory	throug	h effec		coml		pn
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sandwich tern	Хa	Хa	Ха	Ха	Ха	Ха	Ха	Хa	Хa	Хa	Ха	Ха				Хa	Хa	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 40: Forth Islands SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9004			m to ECC /	′ 335.9 km t	o ANS / 361	2 km to bi	ogenic re	eef / 363.4 km	n to ORCI)							
Effect	activity	ement du and ents in	nce and e to work vessel both the intertidal	presenc					migratory	Barrier waterb		r migratory		gh ef ats a	impacts fects on nd prey			on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Gannet	√a	√a	√a	√a	√a	√a		√a								√c	√c	√c
Kittiwake	Xd	Xd	Хd	Χd	Χd	Xd		√b								√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b		Χd								√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b		Χd								√c	√c	√c
Puffin	√b	√b	√b	√b	√b	√b		Χd								√c	√c	√c
Lesser black-backed gull	Xd	Xd	Хd	Χd	Χd	Xd		Χd								Хd	Χd	Χd
Herring gull	Xd	Χd	Хd	Χd	Χd	Χd		Χd								Χd	Χd	Χd
European shag	Xd	Xd	Хd	Χd	Χd	Χd		Χd								Хd	Χd	Χd
Sandwich tern	Xd	Xd	Χd	Χd	Χd	Xd		Χd								Хd	Χd	Χd
Roseate tern	Xd	Χd	Χd	Xd	Χd	Χd		Χd								Χd	Χd	Χd
Arctic tern	Xd	Xd	Хd	Xd	Xd	Xd		Χd								Хd	Χd	Χd
Common tern	Xd	Xd	Хd	Χd	Χd	Χd		Χd								Хd	Χd	Χd

Evidence supporting conclusions

- The Project array is within the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has breeding season connectivity. Designated features have high or very high vulnerability to collision risk with turbines and/or displacement effects (Bradbury *et al.*, 2014). Therefore, these species have been screened into the assessment based on potential collision risk and disturbance/displacement impacts.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.
- The Project array is outside the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore, has breeding season connectivity. Designated seabird species is not vulnerable to the impact and therefore, LSE can be discounted in relation to this effect alone.

Matrix 41: Poole Harbour Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11054			n to ECC / 3	381.1 km to	o ANS / 309	.6 km to bio	ogenic ree	ef / 329.9 km	to ORCP					
Effect	displace activity	and ents in b	to work vessel	presence infrastru	e of		Collisions waterbird		migratory	Barrier of waterbing		r migratory	through	n effects on s and prey	combination
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	O D	C O D
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Xa Xa Xa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 42: Poole Harbour SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK1105	Poole Harbour Ramsar UK11054 (1005) 371.7 km to array / 321.8 km to ECC / 381.1 km to ANS / 309.6 km to biogenic reef / 329.9 km to ORCP																
Effect	displace activity moveme	ment due and ents in	vessel	displacen presence infrastruc	of		Collisions		migratory	Barrier e waterbir		migratory		gh effe ats and	impacts ects on d prey	com		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Хa	Хa				Хa	Ха	Хa
Sandwich tern	Ха	Хa	Хa	Ха	Ха	Хa	Ха	Ха	Хa	Ха	Хa	Ха				Хa	Ха	Хa
Mediterranean gull	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Ха				Хa	Хa	Хa

Evidence supporting conclusions.

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 43: Imperial Dock Lock, Leith SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK90044	51	, Leith SP <i>F</i> / 378.1 km		55.8 km to	ANS / 377	.3 km to bio	ogenic reef	⁻ / 378.4 km	to ORCP								
Effect	displacer activity	nent due and nts in b	to work vessel ooth the	Direct displacem presence infrastruc	ent due of		Collisions waterbird		migratory	Barrier e waterbird		migratory	throug	h effe s and	mpacts octs on d prey	com		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Common tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Χa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 44: Firth of Tay and Eden Estuary SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK90041				367.6 km to	ANS / 394	.2 km to bio	ogenic reef	f / 396.7 km	to ORCP						
Effect	displaced activity moveme	ment due and	to work vessel ooth the	displacen presence infrastruc			Collisions waterbird		migratory	Barrier e waterbire		migratory	throug	gh effe ts and		combination
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C O D
Little tern	Хa	Хa	Хa	Хa	Xa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Xa Xa Xa

Evidence supporting conclusions

The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site. Therefore, LSE can be discounted in relation to all effects alone

Matrix 45: Chesil Beach and The Fleet SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9010	091	The Fleet S / 351.8 km		411.2 km to) ANS / 341	.0 km to bi	ogenic re	ef / 360.5 km	to ORCP						
Effect	displace activity	and ents in	to work	presence infrastru			Collisions waterbird		migratory	Barrier e waterbir		or migratory	through	n effects on s and prey	combir	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	O D	C O	D
Little tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Xa X	ía Xa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 46: Fowlsheugh SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002	Fowlsheugh SPA UK9002271 421.5 km to array / 430.9 km to ECC / 393.4 km to ANS / 426.7 km to biogenic reef / 430.9 km to ORCP																
Effect	activity	ement du and ents in	e to work	displace presence infrastru	e of	nce and e to the array			migratory	Barrier of waterbir		migratory	throu	gh eff ats ar		ts in on combinati ey effects		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D			
Kittiwake	√b	√b	√b	√b	√b	√b		√b			√b					√d	√d	√d
Herring gull	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс	Хс				Хс	Хс	Хс
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√d	√d	√d
Razorbill	√b	√b	√b	√b	√b	√b	Ха	Хa	Хa	Ха	Хa	Ха				√d	√d	√d
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa

Evidence supporting conclusions

- Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. Therefore, LSE can be discounted in relation to all effects alone.
- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has no breeding season connectivity. However, designated features have high or very high vulnerability to collision risk with turbines or displacement effects (Bradbury *et al.*, 2014). Therefore, some vulnerable species have been screened into the assessment for the non-breeding season based on potential collision risk and disturbance/displacement impacts.
 - The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site. Therefore, LSE can be discounted in relation to all effects alone.
- \sqrt{d} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 47: Ythan Estuary, Sands of Forvie and Meikle Loch SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002	Ythan Estuary, Sands of Forvie and Meikle Loch SPA UK9002221 443.1 km to array / 454.6 km to ECC / 451.1 km to ANS / 450.0 km to biogenic reef / 454.6 km to ORCP																
Effect	displace activity moveme	ment due and ents in	vessel	displacen presence infrastruc	of				migratory	Barrier e waterbir		migratory		igh effe ats an	impacts ects on d prey	com		on
Stage of Development	С	0	D	C O D C O D C O D C										0	D	С	0	D
Common tern	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Ха				Хa	Хa	Χa
Little tern	Ха	Хa	Ха	Хa	Ха	Хa	Хa	Хa	Хa	Ха	Хa	Ха				Хa	Хa	Хa
Sandwich tern	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 48: Ythan Estuary and Meikle Loch Ramsar

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK1306:	1 (939)		ch Ramsar n to ECC / 4		ANS / 464	.3 km to bio	ogenic reef	f / 469.2 km	to ORCP						
Effect	displace activity moveme	ment due and	to work vessel ooth the	Direct displacem presence infrastruc	of		Collisions waterbird		migratory	Barrier e waterbire		migratory	throug	gh effe ts and	mpacts cts on I prey	combination
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C O D
Sandwich tern	Хa	Хa	Хa	Ха	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Xa Xa Xa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore has no breeding season connectivity.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 49: Buchan Ness to Collieston Coast SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	XXXXXX		ollieston Co / 469.8 km		33.8 km to	ANS / 464	.8 km to bio	ogenic ree	f / 469.8 km	ı to ORCP								
Effect	displace activity	ment due and ents in l	vessel		of		Collisions waterbird		migratory	Barrier e waterbiro		migratory	_	h effe ts and	mpacts ects on d prey			on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Guillemot	√b	√b	√b	√b	√b	√b		Ха			Хa					√c	√c	√c
Kittiwake	Ха	Хa	Хa	Ха	Ха	Ха		√b			√b						√c	

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. Designated seabird species is not vulnerable to the impact and therefore, LSE can be discounted in relation to this effect alone.
- The Project array is outside of the mean-maximum +1SD foraging ranges (Woodward *et al.*, 2019) for designated seabird species and therefore, has no breeding season connectivity. Designated features have high or very high vulnerability to collision risk with turbines or displacement (Bradbury *et al.*, 2014). Therefore, species have been screened in for non-breeding season impacts.
- √c It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination

Matrix 50: Troup, Pennan and Lion's Heads SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002	2471	nd Lion's He			to ANS / 506	i.8 km to l	oiogenic re	ef / 511.7 km	n to ORCF)						
Effect	activity movem	ement du and ents in		displace present infrastr	ce of	e to the			migratory	Barrier waterb		or migratory		gh effe ats an	impacts ects on d prey	In combine effects	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	C () D
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa				Xa 🗸	/c Xa
Herring gull	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Xa >	Xa Xa
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Xa >	Xa Xa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c v	/c √c
Razorbill	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Ха	Хa	Хa				√c v	/c √c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges for all designated seabird species (Woodward *et al.,* 2019) and therefore has no breeding season connectivity.

 This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 51: East Caithness Cliffs SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9001			n to ECC /	' 554.4 km to	o ANS / 587	.0 km to b	iogenic re	ef / 590.9 km	to ORCP								
Effect	activity	ement du and ents in	nce and e to work vessel both the intertidal	displace present			Collision waterbir		migratory	Barrier of waterbir		migratory	Indire throughabita specie	gh effo ats an	impacts ects on d prey		binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Ха	Хa	Хa	Хa	Хa	Ха	Хa	√b	Хa	Ха	√b	Хa				Ха	√c	Хa
Great black-backed gull	Ха	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Ха	Хa	Ха				Ха	Хa	Хa
Herring gull	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Ха	Хa	Ха				√c	√c	√c
European shag	Ха	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Ха	Хa	Хa				Хa	Хa	Ха
Great cormorant	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

- The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 52: North Caithness Cliffs SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK900			n to ECC / !	582.5 km to	ANS / 618.6	5 km to bi	ogenic reef	⁻ / 623.4 km t	o ORCP								
Effect	activity moven	and and in	e to work	presence infrastru			Collisior waterbi		migratory	Barrier waterbi		r migratory		gh eff ats ar	impacts fects on nd prey	comb		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Puffin	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa				Ха	√c	Хa
Fulmar	Xd	Xd	Χd	Xd	Xd	Xd	Xd	Xd	Xd	Хd	Xd	Xd				Χd	Χd	Χd

Evidence supporting conclusions

- The Project array is beyond the site-specific mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.
- Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range.

Matrix 53: Pentland Firth Islands SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9001:			n to ECC /	591.1 km to	o ANS / 627	'.7 km to bio	ogenic re	ef / 632.7 km	to ORCP					
Effect	displace activity	ment due and ents in l	vessel	displace presence infrastru	e of		Collisions waterbird		migratory	Barrier waterbir		r migratory	through	effects on and prey	combination
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0 D	C O D
Arctic tern	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Xa Xa Xa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone

Matrix 54: Copinsay SPA

Name of designated site: Site Code: Closest Distance to Project	Copins XXXXXX 630.9 k	ίX	v / 646.2 km	n to ECC /	⁷ 608.8 km t	o ANS / 641	2 km to	biogenic re	ef / 646.6 km	n to ORCI	P							
Likely Effects of Project			,	ŕ		, i		J	•									
Effect	activity	and ents in	e to work	displace present			Collisio waterb		migratory	Barrier waterb		or migratory		gh eff ats an	impacts ects on id prey	In comb effec		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa				Ха	√c	Хa
Great black-backed gull	Ха	Хa	Хa	Ха	Хa	Ха	Хa	Хa	Ха	Хa	Хa	Ха				Ха	Ха	Хa
Fulmar	Ха	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Ха	Хa	Хa				√c	√c	√c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges for all designated seabird species (Woodward *et al.,* 2019) and therefore has no breeding season connectivity.

 This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 55: Hoy SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Hoy SP <i>F</i> UK9002 634.8 ki	141	/ 647.5 kn	n to ECC /	607.0 km to	o ANS / 642	.8 km to b	iogenic ree	ef / 647.5 km	n to ORCP								
Effect	Direct displace activity movem offshore zones	and ents in	nce and to work vessel both the intertidal	Direct displaced presenced infrastru	e of		Collision: waterbir		migratory	Barrier waterbi	effects for rds	migratory		gh eff ats an	impacts ects on ad prey		binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic skua	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Ха
Peregrine falcon	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха
Red-throated diver	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха
Great skua	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха
Puffin	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa				Хa	√c	Ха
Great black-backed gull	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Ха

Evidence supporting conclusions

Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward *et al.*, 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for LSE along the gradual for

It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 56: Calf of Eday SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	XXX	Eday SPA m to arra	y / 682.4 kr	n to ECC /	['] 645.2 km t	o ANS / 678	.0 km to b	iogenic re	ef / 683.5 km	n to ORCP								
Effect	activity	and and in		displace present infrastr					migratory	Barrier waterbi	effects for rds	migratory		gh effe ts an	impacts ects on d prey	com		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Ха	Хa	Хa	Хa	Хa	Ха	Ха	√b	Хa	Хa	√b	Ха				Хa	√c	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 58: Rousay SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Rousay <mark>8573</mark> 668.0 k		y / 683.2 kr	n to ECC/	645.8 km to) ANS / 677	.9 km to bi	ogenic re	ef / 683.2 km	n to ORCP								
Effect	displace activity	ement du and ents in		displace presence infrastru			Collisions		migratory	Barrier waterbir		migratory	throu	gh effe ats an	impacts ects on id prey	com		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Ха				Хa	√c	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 59: Marwick Head SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002:			n to ECC / 6	542.6 km to	ANS / 679	.0 km to bi	ogenic ree	f / 683.9 km	to ORCP								
Effect	displace activity	ment due and ents in b		displacer presence					migratory	Barrier e waterbird		migratory	throug	gh effe its and	impacts ects on d prey		binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Kittiwake	Хa	Ха	Хa	Ха	Ха	Ха	Ха	√b	Хa	Ха	√b	Ха				Хa	√c	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Ха	Ха	Хa	Ха	Ха	Ха				√c	√c	√c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 60: Fair Isle SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Fair Isle UK9002 674.7 kr	091	/ / 690.0 kn	n to ECC/	648.7 km t	o ANS / 690	.2 km to b	iogenic ree	ef / 696.7 km	to ORCF	,							
Effect	Direct displace activity movement offshore zones	and ents in	nce and e to work vessel both the intertidal	Direct displace presence infrastru	e of		Collisions waterbird		migratory	Barrier waterb		r migratory		gh ef ats a	impacts fects on nd prey		bination cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Great skua	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Arctic skua	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Arctic tern	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
European shag	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Fair Isle wren	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Puffin	√b	√b	√b	√b	√b	√b	Ха	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b	Ха	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Kittiwake	Хa	Хa	Хa	Хa	Хa	Хa	Ха	√b	Хa	Хa	√b	Хa				Хa	√c	Хa
Gannet	√b	√b	√b	√b	√b	√b	Ха	√b	Хa	Хa	√b	Хa				√c	√c	√c

Evidence supporting conclusions

- The Project array is beyond the mean-maximum +1SD foraging ranges (and maximum site-specific foraging range for fulmar) (Woodward *et al.,* 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 Therefore, LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is no potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 61: West Westray SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002			n to ECC /	650.9 km to	o ANS / 688	.6 km to b	iogenic ree	ef / 693.9 km	n to ORCP								
Effect	activity	and ents in	to work vessel	Direct displacer presence infrastru			Collision: waterbir		migratory	Barrier waterbi		r migratory		gh eff ats an	impacts ects on ad prey		bination cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic skua	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Arctic tern	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Kittiwake	Ха	Хa	Хa	Хa	Хa	Хa	Ха	√b	Хa	Хa	√b	Хa				Хa	√c	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Ха	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Razorbill	√b	√b	√b	√b	√b	√b	Ха	Хa	Хa	Хa	Хa	Ха				√c	√c	√c
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa	Хa				Хa	Ха	Ха

Evidence supporting conclusions

Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance.

Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury et al., 2014).

It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range.

The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward *et al.,* 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).

 \sqrt{c} It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 62: Papa Westray (North Hill and Holm) SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002	111		d Holm) SP		o ANS / 695	.3 km to b	ogenic re	ef / 700.7 km	n to ORCP								
Effect	displace activity	ment due and ents in	vessel	displacer presence infrastru	e of	nce and e to the array	Collision waterbir		migratory	Barrier waterbir		migratory	throu	gh effe ats an	impacts ects on d prey	com		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic skua	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Arctic tern	Ха	Хa	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

The Project array is beyond the mean-maximum +1SD foraging ranges (Woodward et al., 2019) for designated seabird species and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

Therefore, LSE can be discounted in relation to all effects alone.

Matrix 63: Sumburgh Head SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002			n to ECC /	681.8 km to	o ANS / 724	.3 km to b	iogenic re	ef / 731.1 km	n to ORCF)							
Effect	activity	ement due and ents in	to work	displace presence			Collision waterbir		migratory	Barrier waterbi		or migratory		h effe ts and		In comb effec		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Arctic tern	Xa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Kittiwake	Хa	Хa	Хa	Ха	Хa	Хa	Хa	√b	Хa	Ха	√b	Хa				Хa	√c	Хa
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Ха	Хa	Хa	Хa	Хa				Хa	Ха	Хa
Fulmar	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c

Evidence supporting conclusions

- Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward *et al.*, 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).

It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 64: Noss SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Noss SF UK9002 733.3 k	2081	/ 749.0 km	n to ECC / '	709.5 km t	o ANS / 752	.7 km to b	iogenic ree	f / 759.8 km	ı to ORCP								
Effect	activity	and ents in	to work vessel	displace presence infrastru			Collision waterbir		migratory	Barrier e waterbire	ffects for ds	migratory		igh effe ats an	impacts ects on d prey		binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Puffin	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa				√c	√c	√c
Kittiwake	Хa	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa				Хa	√c	Хa
Gannet	√b	√b	√b	√b	√b	√b	Хa	√b	Хa	Ха	√b	Хa				√c	√c	√c
Great skua	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Ха	Ха	Ха	Ха				Хa	Хa	Хa
Fulmar	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

Хa	Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance.
	Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement
	and collision (Bradbury et al., 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been
	apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward et al., 2019) and therefore
	has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.
/l ₂	This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).

It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

End of Matrix 64

√b

√c

Matrix 65: Foula SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Foula S XXXXX 746.7 I	XXX	y / 761.5 kn	n to ECC/	726.1 km to	o ANS / 761	.2 km to bi	ogenic ree	ef / 767.6 km	to ORCP								
Effect	activity	and and in	nce and e to work vessel both the intertidal	presence			Collisions		migratory	Barrier e waterbir		migratory		gh effe its an	impacts ects on d prey			on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Puffin	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Ха	Хa	Хa				√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Ха	Хa	Ха	Хa	Хa				√c	√c	√c
Kittiwake	Хa	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Ха	√b	Хa				Ха	√c	Хa
Great skua	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Ха	Ха	Хa
Arctic tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Ха	Ха	Хa
Shag	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Хa	Хa	Хa
Red-throated diver	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Хa				Ха	Ха	Хa
Leach's storm petrel	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa				Ха	Ха	Хa
Fulmar	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Ха	Хa	Хa				Ха	Ха	Хa

Evidence supporting conclusions

- Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward *et al.*, 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 66: Fetlar SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Fetlar S UK9002 777.5 k	2031	/ / 793.4 kn	n to ECC /	754.7 km t	o ANS / 798	3.6 km to b	iogenic re	ef / 805.8 km	to ORCP								
Effect	activity	ement du and ents in	nce and e to work vessel both the intertidal	displace:	e of		Collision waterbir		migratory	Barrier waterbi		r migratory		gh effe ts an	impacts ects on d prey		binati cts	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Great skua	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Arctic skua	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Arctic tern	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Fulmar	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха				Хa	Хa	Хa
Red-necked phalarope	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Ха	Хa	Хa
Dunlin	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa
Whimbrel	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward *et al.*, 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site. This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

End of Matrix 66

Хa

Matrix 67: Hermaness, Saxa Vord and Valla Field SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9002	2011	Vord and V			o ANS / 819	.3 km to t	iogenic re	ef / 826.5 km	to ORCP							
Effect	activity movem	ement du and ents in	nce and e to work vessel both the intertidal	displace:	e of		Collisior waterbi		migratory	Barrier waterbi		r migratory		impact effects of and pre	cor	nbina [.] ects	tion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	C	O D	С	0	D
Great skua	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Хa	Хa	Хa
European shag	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Хa	Хa	Хa
Red-throated diver	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa			√c	√c	√c
Puffin	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa			√c	√c	√c
Guillemot	√b	√b	√b	√b	√b	√b	Хa	Хa	Хa	Хa	Хa	Хa			√c	√c	√c
Kittiwake	Хa	Хa	Хa	Хa	Хa	Хa	Хa	√b	Хa	Хa	√b	Хa			Хa	√c	Хa
Gannet	√b	√b	√b	√b	√b	√b	Хa	√b	Хa	Хa	√b	Хa			√c	√c	√c
Fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Хa	Хa	Ха

Evidence supporting conclusions

- Site has connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury et al., 2014). It is therefore determined that significant effects would not manifest on this distant SPA/ Ramsar after the likelihood and severity of effects on the SPA have been apportioned to all SPAs within the foraging range. The Project array is beyond the mean-maximum +1SD foraging ranges for all other designated seabird species (Woodward et al., 2019) and therefore has no breeding season connectivity. We conclude negligible potential for impact on migratory birds from this SPA/ Ramsar passing through the site based on the distance from the site.

 This SPA is therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.
- These designated features are beyond mean-maximum +1SD foraging range (Bradbury et al., 2014; Dierschke et al., 2016). Therefore there is not potential for LSE during the breeding season. However, as the species BDMPS spans the colony and the Project, there is potential for connectivity in the non-breeding season(s).
- It is considered that where there is a potential for LSE alone, there is a potential for LSE in-combination.

Matrix 68: Transboundary sites for Lesser black-backed gull (3 sites)

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Various			Waddenzee	e; and Duin	en Vlieland	J											
Effect	displace activity	ment du and ents in	vessel		of		Collisions waterbird		migratory	Barrier of waterbir		migratory	_	h effe ts and	impacts ects on d prey	comb		on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Lesser black-backed gull	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa	Хa	Хa				Хa	Хa	Хa

Evidence supporting conclusions

Χa

Sites have connectivity with breeding lesser black-backed gull based on mean-maximum +1SD foraging range, however the distance is at the extent of the foraging range and the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement (Bradbury et al., 2014).

It is therefore determined that significant effects would not manifest on these distant SPAs/ Ramsars after the likelihood and severity of effects on the SPAs have been apportioned to all SPAs within the foraging range.

These SPAs are therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

Matrix 69: Transboundary sites for Northern fulmar (9 sites)

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Camare Various	t; Falaise	du Bessin (d'Erquy-Cap essant-Molèr								
Effect	activity	ement du and ents in		displace present infrastr		e to the	Collisions waterbire		migratory	Barrier waterb		or migratory	through	n effects c s and pre	n com	nbinati ects	on
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	O D	С	0	D
Northern fulmar	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Ха	Хa	Хa			Хa	Хa	Хa

Evidence supporting conclusions

Xa Sites

Sites have connectivity with breeding fulmar based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014).

It is therefore determined that significant effects would not manifest on these distant SPAs/ Ramsars after the likelihood and severity of effects on the SPAs have been apportioned to all SPAs within the foraging range.

These SPAs are therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

Matrix 70: Transboundary sites for Manx shearwater (4 sites)

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Various			s; lles Hou	ıat-Hoedic;	Ouessant-N	Aolène; and	l Baie de	Morlaix.							
Effect	displace activity	ment due and ents in		displace presence infrastru	e of	nce and e to the array			migratory	Barrier waterbir		r migratory	throug	n effects of s	n combi	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	O D	C) D
Manx shearwater	Ха	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa	Хa			Xa)	(a Xa

Evidence supporting conclusions

Χa

Sites have connectivity with breeding Manx shearwater based on mean-maximum +1SD foraging range, however the significance of effects at a population level is considered to decrease exponentially with distance. Due to the large foraging range for this species, the likelihood and or severity of the effect experienced locally is considered negligible. In addition, this species has very low vulnerability to displacement and collision (Bradbury *et al.*, 2014).

It is therefore determined that significant effects would not manifest on these distant SPAs/ Ramsars after the likelihood and severity of effects on the SPAs have been apportioned to all SPAs within the foraging range.

These SPAs are therefore not considered relevant in the context of the HRA and LSE can be discounted in relation to all effects alone.

3.4 Sites designated with Migratory Fish Features

Matrix 71: Humber Estuary SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UKOC	30170			m to E(CC / 47	.5 km t	to ANS	/ 23.8	km to l	biogen	ic reef	/ 19.7	to OR(CP .												
Effect	Unde noise	erwate	r	sedir	ended nent / osition		Indire	ect pol	lution	Accid pollu			EMF			INNS			loss /	cal hak rbance		Chan	ges to	prey	In-co effec	mbinat cts	ion
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Sea lamprey	√a	Хb	√a	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb
River lamprey	√a	Хb	√a	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb	Хb

Evidence supporting conclusions

 \sqrt{a} The range between the array areas and designated site mean that there is a potential for LSE for this species at this site.

No potential for LSE. These features have been screened out from assessment as a result of the distance between the Project and the designated site and the nature of effect.

3.5 Sites Designated with Onshore Ecology Features

Matrix 72: Humber Estuary SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	Uk	(90061		5 km to I	ECC / 15.3	km to ANS / 4	7.5 km t	to biogenic	reef / 18.2 kr	n to ORC	:P	
Effect			loss of or o habitats	Risk displac		disturbance/	nesting and depend	g habitat for outside	roosting and birds inside the SPA ation of the astructure	Risk of	pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Great bittern				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Common shelduck				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Eurasian marsh harrier				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Hen harrier				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Pied avocet				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
European golden plover				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Red knot				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Dunlin				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Ruff				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Black-tailed godwit				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Bar-tailed godwit				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Common redshank				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Little tern				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a
Waterbird assemblage				√a	√a	√a	√a	Хb	Хb	√a	Хb	√a

Evidence supporting conclusions

√a Risk of disturbance, and of loss of foraging, roosting and nesting habitat for birds outside the SPA only based on ranges of the ornithological features.

No potential for LSE. These features have been screened out from assessment as a result of the distance between the Project and the designated site and the nature of the works and activities in these different phases.

Matrix 73: Humber Estuary Ramsar Site

Name of designated Humber Estuary Ramsar Site site: UK11031 (663) Site Code: Closest Distance to 54.0 km to array / 12.5 km to ECC / 15.3 km to ANS / 47.5 km to biogenic reef / 18.2 km to ORCP Likely Effects of Project Effect Risk of loss of Risk of Risk of pollution of Loss or damage to disturbance/ foraging, displacement roosting and nesting habitat birds SPA the depending on location of the above ground infrastructure D 0 0 0 Stage of C 0 D Development Criterion 1- dune Xb Xb Xb Xb Xb Xb Xb Xb Xb systems and humid dune slacks; Criterion 5 $Xb | \sqrt{a} | \sqrt{a} | \sqrt{a} | \sqrt{a} | Xb | Xb | \sqrt{a} | Xb | \sqrt{a}$ √a √a assemblages of international importance (waterfowl, nonbreeding season); Criterion 6 √a $Xb | \sqrt{a} | \sqrt{a} | \sqrt{a} | \sqrt{a} | Xb | Xb | \sqrt{a} | Xb | \sqrt{a}$ species/populations occurring at levels international of importance Common shelduck √a Xb √a √a √a √a | Xb | Xb √a | Xb | √a √a Eurasian golden √a Xb √a √a √a Χb Χb Χb √a √a plover Red knot √a Xb √a Χb √a √a √a Χb √a | Xb | √a Dunlin √a Χb √a √a √a √a Xb Χb √a | Xb | √a Black-tailed godwit √a √a Хb √a √a √a √a Xb Xb √a Xb √a Bar-tailed godwit √a Χb Χb √a Xb | √a | √a √a Χb √a √a Common redshank √a $Xb | \sqrt{a} | \sqrt{a} | \sqrt{a} | \sqrt{a} | Xb | Xb | \sqrt{a} | Xb | \sqrt{a}$

Evidence supporting conclusions

✓a Potential for LSE due to disturbance, and loss of foraging and roosting habitat. This is limited to birds and habitats outside of the RAMSAR.
 Due to the mobile nature of the birds, the ornithological features are considered to have potential for LSE.

No potential for LSE. These features have been screened out from assessment as a result of the distance between the Project and the designated site and the nature of the works and activities in these different phases.

Matrix 74: Humber Estuary SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK0030			ECC / 19	.7 km to AN	IS / 47.5 kn	n to biogenio	c reef / 23.8	km to ORCP			
Effect	Risk of habitat		damage to	Risk of	disturbance	2	nesting and ou	habitat fo tside the SI tion of the	roosting and r birds inside PA depending above ground	Risk of	pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Sandbanks which are slightly covered by sea water all the time; Subtidal sandbanks	Хa	Хa	Хa							Хa	Хa	Хa
Estuaries	Хa	Хa	Хa							Хa	Хa	Хa
Mudflats and sandflats not covered by seawater at low tide; Intertidal mudflats and sandflats	Хa	Хa	Хa							Ха	Хa	Хa
Coastal lagoons	Хa	Хa	Хa							Хa	Хa	Хa
Salicornia and other annuals colonising mud and sand; Glasswort and other annuals colonising mud and sand	Ха	Ха	Ха							Ха	Ха	Ха
Atlantic salt meadows	Хa	Хa	Хa							Ха	Хa	Хa
Embryonic shifting dunes	Хa	Хa	Хa							Хa	Хa	Хa
Shifting dunes along the shoreline with Ammophila arenaria (white dunes)	Хa	Хa	Хa							Хa	Хa	Хa
Shifting dunes with marram	Хa	Ха	Хa							Ха	Хa	Хa
Fixed dunes with herbaceous vegetation (grey dunes)	Хa	Хa	Хa							Ха	Ха	Ха
Dune grassland	Хa	Хa	Хa							Хa	Хa	Хa
Dunes with <i>Hippophae rhamnoides</i> ; Dunes with sea-buckthorn	Хa	Хa	Хa							Ха	Ха	Ха

Evidence supporting conclusions

Xa Due to the distance between the Order Limits and the SAC, and the nature of the habitats, there is no risk of undermining the conservation objectives for this SAC.

Matrix 75: Saltfleetby-Theddlethorpe Dunes & Gibraltar Point SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK00302	.70			altar Point		o biogenic	reef / 1.6 l	km to ORCP			
Effect	Risk of Id habitats	oss of or d	lamage to	Risk of di	sturbance		nesting and out	habitat fo side the SF tion of the a	roosting and r birds inside PA depending above ground	Risk of	pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Embryonic shifting dunes	√a	√a	√a	√a		√a				√a	√a	√a
Shifting dunes along the shoreline with Ammophila arenaria (""white dunes"")	√a	√a	√a	√a		√a				√a	√a	√a
Fixed coastal dunes with herbaceous vegetation (""grey dunes"")	√a	√a	√a	√a		√a				√a	√a	√a
Dunes with Hippophae rhamnoides	√a	√a	√a	√a		√a				√a	√a	√a
Humid dune slacks	√a	√a	√a	√a		√a				√a	√a	√a

Evidence supporting conclusions

Risk of loss of or damage to Annex I habitats depending on location of the above ground infrastructure. Potential for LSE on all qualifying features. This is a precautionary conclusion based on project design uncertainties.

Matrix 76: The Wash SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project		3021 n to array / :	16.5 km to ECC /									
Effect	habitats habitat for birds inside and outside the SPA depending on location of the above ground infrastructure								oollution			
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Bewick's swan				√a	√a	√a	√a			√a		√a
Pink-footed goose				√a	√a	√a	√a			√a		√a
Dark-bellied brent goose				√a	√a	√a	√a			√a		√a
Common shelduck				√a	√a	√a	√a			√a		√a
Eurasian wigeon				√a	√a	√a	√a			√a		√a
Gadwall				√a	√a	√a	√a			√a		√a
Northern pintail				√a	√a	√a	√a			√a		√a
Black (common) scoter				√a	√a	√a	√a			√a		√a
Common goldeneye				√a	√a	√a	√a			√a		√a
Eurasian oystercatcher				√a	√a	√a	√a			√a		√a
Grey plover				√a	√a	√a	√a			√a		√a
Red knot				√a	√a	√a	√a			√a		√a
Sanderling				√a	√a	√a	√a			√a		√a
Dunlin				√a	√a	√a	√a			√a		√a
Black-tailed godwit				√a	√a	√a	√a			√a		√a
Bar-tailed godwit				√a	√a	√a	√a			√a		√a
Eurasian curlew				√a	√a	√a	√a			√a		√a
Common redshank				√a	√a	√a	√a			√a		√a
Ruddy turnstone				√a	√a	√a	√a			√a		√a
Common tern				√a	√a	√a	√a			√a		√a
Little tern				√a	√a	√a	√a			√a		√a
Waterbird assemblage				√a	√a	√a	√a			√a		√a

LVIIdonco	supporting	CODC	liicianc

Risk of disturbance and loss of foraging, roosting and nesting habitat for birds inside and outside the SPA depending on location of the above ground infrastructure and Risk of pollution. Potential for LSE on all qualifying features.

Matrix 77: The Wash RAMSAR site

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK110	ash RAMS 72 (395) n to array		ECC / 22	.7 km to AN	IS / 74.0 km to	biogeni	c reef / 3.8	km to ORCP			
Effect	Risk of habita		r damage to	Risk displac	of ement	disturbance/	nesting and ou	habitat for tside the Soltion of the	roosting and or birds inside PA depending above ground	Risk of	pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Criterion 1 – Saltmarshes, major intertidal banks of sand and mud, shallow water, and deep channels	√a			√a	√a	√a	√a			√a		√a
Criterion 3 – Inter-relationship between saltmarshes, intertidal sand, mudflats, and estuarine waters	√a			√a	√a	√a	√a			√a		√a
Criterion 5 – Bird assemblages of international importance				√a	√a	√a	√a			√a		√a
Criterion 6 – Bird species/ populations occurring at levels of international importance				√a	√a	√a	√a			√a		√a
Common redshank				√a	√a	√a	√a			√a		√a
Eurasian curlew				√a	√a	√a	√a			√a		√a
Eurasian oystercatcher				√a	√a	√a	√a			√a		√a
Grey plover				√a	√a	√a	√a			√a		√a
Red knot				√a	√a	√a	√a			√a		√a
Sanderling				√a	√a	√a	√a			√a		√a
Black-headed gull				√a	√a	√a	√a			√a		√a
Common eider				√a	√a	√a	√a			√a		√a
Bar-tailed godwit				√a	√a	√a	√a			√a		√a
Common shelduck				√a	√a	√a	√a			√a		√a
Dark-bellied brent goose				√a	√a	√a	√a			√a		√a
Dunlin				√a	√a	√a	√a			√a		√a
Pink-footed goose				√a	√a	√a	√a			√a		√a

Evidence supporting conclusions

Risk of loss of or damage to estuary habitats. Risk of disturbance and loss of foraging and roosting habitat inside and outside the Ramsar site, depending on location of the above ground infrastructure. Risk of pollution. Potential for LSE on all qualifying features.

Matrix 78: The Wash & North Norfolk Coast SAC

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK00170)75	Norfolk Co		km to ANS	/ 50.4 km to	biogenic r	eef / 0.0 km	to ORCP						
Effect		Risk of loss of or damage to habitat quality. Risk of disturbance/ displacement quality. Risk of disturbance/ displacement and outside the SPA depending on location of the above ground infrastructure							llution			cement c duction o			
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D	С	0	D
Atlantic salt meadows	√a	√a	√a	√a		√a									
Mediterranean and thermo-Atlantic halophilous scrubs	halophilous 🗸 a 🗸 a 🗸 a 🗸 a 🗸 a 🗸 a 🗸 a 🗸														
Coastal lagoons	√a	√a	√a	√a		√a									
Otter				√a	√a	√a							√a		√a

Evidence supporting conclusions

Risk of loss of or damage to Annex I habitats depending on location of the above ground infrastructure. Displacement of otter and reduction of otter habitat. Potential for LSE on all qualifying features. This is a precautionary conclusion based on project design uncertainties.

Matrix 79: Greater Wash SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK9020		4 / 0.0 km to E	CC / 0.0 I	km to ANS /	24.0 km to l	oiogenic re	eef / 0.0 km	n to ORCP			
Effect		s, reductio	damage to n of habitat		ance/displad		nesting and ou	habitat fo tside the S tion of the	roosting and or birds inside PA depending above ground	Risk of	pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Sandwich tern	√a √a √a √a					√a	√a			√a		√a
Common tern	√a √a √a					√a	√a			√a		√a
Little tern	√a	√a	√a	√a	√a			√a		√a		

Evidence supporting conclusions

Risk of disturbance of nesting birds inside the SPA and loss of foraging habitat outside the SPA, depending on location of the above ground infrastructure; and Risk of pollution. Potential for LSE on all qualifying features.

Matrix 80: Gibraltar Point SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK900			ECC / 19.	3 km to A	NS / 70.5 km to	biogenio	c reef / 1.6	km to ORCP			
Effect		ts, reduction	r damage to on of habitat		of ement	disturbance/	nesting and ou	habitat for tside the S tion of the	roosting and or birds inside PA depending above ground	Risk of p	oollution	
Stage of Development	С	0	D	С	О	D	С	О	D	С	0	D
Grey plover				√a	√a	√a	√a			√a		√a
Sanderling				√a	√a	√a	√a			√a		√a
Bar-tailed godwit				√a	√a	√a	√a			√a		√a
Little tern				√a	√a	√a	√a			√a		√a

Evidence supporting conclusions

Risk of disturbance, and of loss of foraging, roosting and nesting habitat outside the SPA depending on location of the above ground infrastructure. Risk of pollution. Potential for LSE on all qualifying features.

Matrix 81: Gibraltar Point RAMSAR

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK11027			ECC / 19	.3 km to AN	NS / 70.5 km to	biogeni	c reef / 1.6	km to ORCP			
Effect			damage to n of habitat	Risk displac	of ement	disturbance/	nesting and ou on loca infrasti decline	tside the Sition of the Cucture,	roosting and or birds inside PA depending above ground coss of or ions of scarce plants		pollution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Ramsar Criterion 1: Coastal habitats – estuarine mudflats, sandbanks, and saltmarsh	√a		√a	√a	√a	√a				√a		√a
Ramsar Criterion 2: Red Data book invertebrates				√a	√a	√a	√a			√a		√a
Notable plant species				√a	√a	√a	√a			√a		√a
Ramsar Criterion 5: Waterfowl				√a	√a	√a	√a			√a		√a
Ramsar Criterion 6: Grey plover, sanderling, bartailed godwit, dark-bellied brent goose				√a	√a	√a	√a			√a		√a

Evidence supporting conclusions

Risk of pollution, affecting aquatic invertebrates, plants and birds. Risk of disturbance and loss of foraging and roosting habitat outside the Ramsar site for dark-bellied brent goose. Potential for LSE on some coastal habitats, waterfowl, invertebrates and plants.

Matrix 82: North Norfolk SPA

Name of designated site: Site Code: Closest Distance to Project Likely Effects of Project	UK90090		29.9km to E	ECC / 31.4 k	m to ANS /	⁷ 59.0 km to	biogenic ree	ef / 10.8 km	n to ORCP			
Effect			amage to of habitat	Risk displacem		isturbance/	nesting ha	abitat for bide the SPA on of the abo	osting and irds inside depending ove ground		llution	
Stage of Development	С	0	D	С	0	D	С	0	D	С	0	D
Pink-footed goose				√a	√a	√a	√a					

Evidence supporting conclusions

√a Risk of disturbance and loss of foraging and roosting habitat outside the SPA. Potential for LSE on pink-footed goose.

Matrix 83: North Norfolk RAMSAR

Name of designated site:	Nor	th Norfo	lk RAN	1SAR							
Site Code:	76										
Closest Distance	56.4	km to	array /	29.9 kı	m to E	CC / 31.3	3 km to	ANS	/ 59	.0 km	n to biogenic reef / 10.8 km to ORCP
to Project											
Likely Effects of P	rojec	t									
Effect	Risk	of loss	Risk		of	Loss of	f forag	ging,	Risk	of p	pollution
	of	or	distu	ırbanc	e/	roostin	g	and			
	dan	nage to	displ	aceme	ent	nesting	g hal	bitat			
	hab	itats,				for bi	rds in	iside			
	red	uction				and o	utside	the			
	of	habitat				SPA	depen	ding			
	qua	lity.				on loca	ition o	f the			
						above	gro	ound			
						infrastr	ructure	e.			
Stage of	С	O D	С	0	D	С	0	D	С	0	D
Development											
Pink-footed			√a	√a	√a	√a					
goose											

Evidence supporting conclusions

√a Risk of disturbance and loss of foraging and roosting habitat outside the SPA. Potential for LSE on pink-footed goose.